Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
8
result(s) for
"Stojkova, Pavla"
Sort by:
Nucleoid-Associated Protein HU: A Lilliputian in Gene Regulation of Bacterial Virulence
by
Stojkova, Pavla
,
Spidlova, Petra
,
Stulik, Jiri
in
Amino acids
,
Bacteria
,
Bacterial Proteins - chemistry
2019
Nucleoid-associated proteins belong to a group of small but abundant proteins in bacterial cells. These transcription regulators are responsible for many important cellular processes and also are involved in pathogenesis of bacteria. The best-known nucleoid-associated proteins, such as HU, FIS, H-NS, and IHF, are often discussed. The most important findings in research concerning HU protein are described in this mini review. Its roles in DNA compaction, shape modulation, and negative supercoiling induction have been studied intensively. HU protein regulates bacteria survival, growth, SOS response, virulence genes expression, cell division, and many other cell processes. Elucidating the mechanism of HU protein action has been the subject of many research projects. This mini review provides a comprehensive overview of the HU protein.
Journal Article
Bacterial nucleoid-associated protein HU as an extracellular player in host-pathogen interaction
2022
HU protein is a member of nucleoid-associated proteins (NAPs) and is an important regulator of bacterial virulence, pathogenesis and survival. NAPs are mainly DNA structuring proteins that influence several molecular processes by binding the DNA. HU´s indispensable role in DNA-related processes in bacteria was described. HU protein is a necessary bacterial transcription factor and is considered to be a virulence determinant as well. Less is known about its direct role in host-pathogen interactions. The latest studies suggest that HU protein may be secreted outside bacteria and be a part of the extracellular matrix. Moreover, HU protein can be internalized in a host cell after bacterial infection. Its role in the host cell is not well described and further studies are extremely needed. Existing results suggest the involvement of HU protein in host cell immune response modulation in bacterial favor, which can help pathogens resist host defense mechanisms. A better understanding of the HU protein’s role in the host cell will help to effective treatment development.
Journal Article
Control of Francisella tularensis Virulence at Gene Level: Network of Transcription Factors
by
Stojkova, Pavla
,
Spidlova, Petra
,
Stulik, Jiri
in
Bacteria
,
Deoxyribonucleic acid
,
DNA-binding protein
2020
Regulation of gene transcription is the initial step in the complex process that controls gene expression within bacteria. Transcriptional control involves the joint effort of RNA polymerases and numerous other regulatory factors. Whether global or local, positive or negative, regulators play an essential role in the bacterial cell. For instance, some regulators specifically modify the transcription of virulence genes, thereby being indispensable to pathogenic bacteria. Here, we provide a comprehensive overview of important transcription factors and DNA-binding proteins described for the virulent bacterium Francisella tularensis, the causative agent of tularemia. This is an unexplored research area, and the poorly described networks of transcription factors merit additional experimental studies to help elucidate the molecular mechanisms of pathogenesis in this bacterium, and how they contribute to disease.
Journal Article
The Ubiquitination System within Bacterial Host–Pathogen Interactions
by
Rehulka, Pavel
,
Vozandychova, Vera
,
Stojkova, Pavla
in
acetylation
,
autophagy
,
bacterial infections
2021
Ubiquitination of proteins, like phosphorylation and acetylation, is an important regulatory aspect influencing numerous and various cell processes, such as immune response signaling and autophagy. The study of ubiquitination has become essential to learning about host–pathogen interactions, and a better understanding of the detailed mechanisms through which pathogens affect ubiquitination processes in host cell will contribute to vaccine development and effective treatment of diseases. Pathogenic bacteria (e.g., Salmonella enterica, Legionella pneumophila and Shigella flexneri) encode many effector proteins, such as deubiquitinating enzymes (DUBs), targeting the host ubiquitin machinery and thus disrupting pertinent ubiquitin-dependent anti-bacterial response. We focus here upon the host ubiquitination system as an integral unit, its interconnection with the regulation of inflammation and autophagy, and primarily while examining pathogens manipulating the host ubiquitination system. Many bacterial effector proteins have already been described as being translocated into the host cell, where they directly regulate host defense processes. Due to their importance in pathogenic bacteria progression within the host, they are regarded as virulence factors essential for bacterial evasion. However, in some cases (e.g., Francisella tularensis) the host ubiquitination system is influenced by bacterial infection, although the responsible bacterial effectors are still unknown.
Journal Article
Francisella tularensis D-Ala D-Ala Carboxypeptidase DacD Is Involved in Intracellular Replication and It Is Necessary for Bacterial Cell Wall Integrity
by
Stojkova, Pavla
,
Philimonenko, Vlada
,
Spidlova, Petra
in
Animals
,
Anti-Bacterial Agents - pharmacology
,
Antibiotics
2018
D-alanyl-D-alanine carboxypeptidase, product of
gene in
, belongs to penicillin binding proteins (PBPs) and is involved in remodeling of newly synthetized peptidoglycan. In
, PBPs are synthetized in various growth phases and they are able to substitute each other to a certain extent. The DacD protein was found to be accumulated in fraction enriched in membrane proteins from severely attenuated
deletion mutant strain. It has been presumed that the DsbA is not a virulence factor by itself but that its substrates, whose correct folding and topology are dependent on the DsbA oxidoreductase and/or isomerase activities, are the primary virulence factors. Here we demonstrate that
DacD is required for intracellular replication and virulence in mice. The
insertion mutant strain showed higher sensitivity to acidic pH, high temperature and high osmolarity when compared to the wild-type. Eventually, transmission electron microscopy revealed differences in mutant bacteria in both the size and defects in outer membrane underlying its SDS and serum sensitivity. Taken together these results suggest DacD plays an important role in
pathogenicity.
Journal Article
The type IV pili component PilO is a virulence determinant of Francisella novicida
2022
Francisella tularensis is a highly pathogenic intracellular bacterium that causes the disease tularemia. While its ability to replicate within cells has been studied in much detail, the bacterium also encodes a less characterised type 4 pili (T4P) system. T4Ps are dynamic adhesive organelles identified as major virulence determinants in many human pathogens. In F . tularensis , the T4P is required for adherence to the host cell, as well as for protein secretion. Several components, including pilins, a pili peptidase, a secretin pore and two ATPases, are required to assemble a functional T4P, and these are encoded within distinct clusters on the Francisella chromosome. While some of these components have been functionally characterised, the role of PilO, if any, still is unknown. Here, we examined the role of PilO in the pathogenesis of F . novicida . Our results show that the PilO is essential for pilus assembly on the bacterial surface. In addition, PilO is important for adherence of F . novicida to human monocyte-derived macrophages, secretion of effector proteins and intracellular replication. Importantly, the pilO mutant is attenuated for virulence in BALB/c mice regardless of the route of infection. Following intratracheal and intradermal infection, the mutant caused no histopathology changes, and demonstrated impaired phagosomal escape and replication within lung liver as well as spleen. Thus, PilO is an essential virulence determinant of F . novicida .
Journal Article
Control of Francisellatularensis Virulence at Gene Level: Network of Transcription Factors
2020
Regulation of gene transcription is the initial step in the complex process that controls gene expression within bacteria. Transcriptional control involves the joint effort of RNA polymerases and numerous other regulatory factors. Whether global or local, positive or negative, regulators play an essential role in the bacterial cell. For instance, some regulators specifically modify the transcription of virulence genes, thereby being indispensable to pathogenic bacteria. Here, we provide a comprehensive overview of important transcription factors and DNA-binding proteins described for the virulent bacterium Francisella tularensis, the causative agent of tularemia. This is an unexplored research area, and the poorly described networks of transcription factors merit additional experimental studies to help elucidate the molecular mechanisms of pathogenesis in this bacterium, and how they contribute to disease.
Journal Article
The type IV pili component PilO is a virulence determinant of Francisella novicida
2022
Francisella tularensis is a highly pathogenic intracellular bacterium that causes the disease tularemia. While its ability to replicate within cells has been studied in much detail, the bacterium also encodes a less characterised type 4 pili (T4P) system. T4Ps are dynamic adhesive organelles identified as major virulence determinants in many human pathogens. In F. tularensis, the T4P is required for adherence to the host cell, as well as for protein secretion. Several components, including pilins, a pili peptidase, a secretin pore and two ATPases, are required to assemble a functional T4P, and these are encoded within distinct clusters on the Francisella chromosome. While some of these components have been functionally characterised, the role of PilO, if any, still is unknown. Here, we examined the role of PilO in the pathogenesis of F. novicida. Our results show that the PilO is essential for pilus assembly on the bacterial surface. In addition, PilO is important for adherence of F. novicida to human monocyte-derived macrophages, secretion of effector proteins and intracellular replication. Importantly, the pilO mutant is attenuated for virulence in BALB/c mice regardless of the route of infection. Following intratracheal and intradermal infection, the mutant caused no histopathology changes, and demonstrated impaired phagosomal escape and replication within lung liver as well as spleen. Thus, PilO is an essential virulence determinant of F. novicida.
Journal Article