Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
119
result(s) for
"Stone, Nicholas P."
Sort by:
Principles for enhancing virus capsid capacity and stability from a thermophilic virus capsid structure
by
Demo, Gabriel
,
Kelch, Brian A.
,
Stone, Nicholas P.
in
101/28
,
631/326/596/2148
,
631/535/1258/1259
2019
The capsids of double-stranded DNA viruses protect the viral genome from the harsh extracellular environment, while maintaining stability against the high internal pressure of packaged DNA. To elucidate how capsids maintain stability in an extreme environment, we use cryoelectron microscopy to determine the capsid structure of thermostable phage P74-26 to 2.8-Å resolution. We find P74-26 capsids exhibit an overall architecture very similar to those of other tailed bacteriophages, allowing us to directly compare structures to derive the structural basis for enhanced stability. Our structure reveals lasso-like interactions that appear to function like catch bonds. This architecture allows the capsid to expand during genome packaging, yet maintain structural stability. The P74-26 capsid has T = 7 geometry despite being twice as large as mesophilic homologs. Capsid capacity is increased with a larger, flatter major capsid protein. Given these results, we predict decreased icosahedral complexity (i.e. T ≤ 7) leads to a more stable capsid assembly.
Viral capsids need to protect the genome against harsh environmental conditions and cope with high internal pressure from the packaged genome. Here, the authors determine the structure of the thermostable phage P74-26 capsid at 2.8-Å resolution and identify features underlying enhanced capsid capacity and structural stability.
Journal Article
Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch
by
Kelch, Brian A.
,
Hedglin, Mark
,
Gaubitz, Christl
in
Adenosine
,
Adenosine triphosphatase
,
Adenosine triphosphate
2020
DNA replication requires the sliding clamp, a ring-shaped protein complex that encircles DNA, where it acts as an essential cofactor for DNA polymerases and other proteins. The sliding clamp needs to be opened and installed onto DNA by a clamp loader ATPase of the AAA+ family. The human clamp loader replication factor C (RFC) and sliding clamp proliferating cell nuclear antigen (PCNA) are both essential and play critical roles in several diseases. Despite decades of study, no structure of human RFC has been resolved. Here, we report the structure of human RFC bound to PCNA by cryogenic electron microscopy to an overall resolution of ∼3.4 Å. The active sites of RFC are fully bound to adenosine 5′-triphosphate (ATP) analogs, which is expected to induce opening of the sliding clamp. However, we observe the complex in a conformation before PCNA opening, with the clamp loader ATPase modules forming an overtwisted spiral that is incapable of binding DNA or hydrolyzing ATP. The autoinhibited conformation observed here has many similarities to a previous yeast RFC:PCNA crystal structure, suggesting that eukaryotic clamp loaders adopt a similar autoinhibited state early on in clamp loading. Our results point to a “limited change/induced fit” mechanism in which the clamp first opens, followed by DNA binding, inducing opening of the loader to release autoinhibition. The proposed change from an overtwisted to an active conformation reveals an additional regulatory mechanism for AAA+ ATPases. Finally, our structural analysis of disease mutations leads to a mechanistic explanation for the role of RFC in human health.
Journal Article
Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader
by
Demo, Gabriel
,
Gaubitz, Christl
,
Pajak, Joshua
in
AAA+
,
Adenosine triphosphatase
,
Adenosine Triphosphatases - metabolism
2022
Sliding clamps are ring-shaped protein complexes that are integral to the DNA replication machinery of all life. Sliding clamps are opened and installed onto DNA by clamp loader AAA+ ATPase complexes. However, how a clamp loader opens and closes the sliding clamp around DNA is still unknown. Here, we describe structures of the Saccharomyces cerevisiae clamp loader Replication Factor C (RFC) bound to its cognate sliding clamp Proliferating Cell Nuclear Antigen (PCNA) en route to successful loading. RFC first binds to PCNA in a dynamic, closed conformation that blocks both ATPase activity and DNA binding. RFC then opens the PCNA ring through a large-scale ‘crab-claw’ expansion of both RFC and PCNA that explains how RFC prefers initial binding of PCNA over DNA. Next, the open RFC:PCNA complex binds DNA and interrogates the primer-template junction using a surprising base-flipping mechanism. Our structures indicate that initial PCNA opening and subsequent closure around DNA do not require ATP hydrolysis, but are driven by binding energy. ATP hydrolysis, which is necessary for RFC release, is triggered by interactions with both PCNA and DNA, explaining RFC’s switch-like ATPase activity. Our work reveals how a AAA+ machine undergoes dramatic conformational changes for achieving binding preference and substrate remodeling.
Journal Article
Structure and mechanism of the ATPase that powers viral genome packaging
by
Brian A. Kelch
,
Caroline M. Duffy
,
Banumathi Sankaran
in
Adenosine Diphosphate - metabolism
,
Adenosine triphosphatase
,
Adenosine Triphosphatases - chemistry
2015
Many viruses package their genomes into procapsids using an ATPase machine that is among the most powerful known biological motors. However, how this motor couples ATP hydrolysis to DNA translocation is still unknown. Here, we introduce a model system with unique properties for studying motor structure and mechanism. We describe crystal structures of the packaging motor ATPase domain that exhibit nucleotide-dependent conformational changes involving a large rotation of an entire subdomain. We also identify the arginine finger residue that catalyzes ATP hydrolysis in a neighboring motor subunit, illustrating that previous models for motor structure need revision. Our findings allow us to derive a structural model for the motor ring, which we validate using small-angle X-ray scattering and comparisons with previously published data. We illustrate the modelâs predictive power by identifying the motorâs DNA-binding and assembly motifs. Finally, we integrate our results to propose a mechanistic model for DNA translocation by this molecular machine.
Many viruses use a molecular motor to pump DNA into a preformed protein shell called the capsid, a process that is essential for the formation of infectious virus particles. The ATPase machine powering this process is the strongest known biological motor. However, the structure and mechanism of this motor are unknown. Here, we derive a structural model of the ATPase assembly using a combination of X-ray crystallography, small-angle X-ray scattering, molecular modeling, and biochemical data. We identify residues critical for ATP hydrolysis and DNA binding, and derive a mechanistic model for the translocation of DNA into the viral capsid. Our studies introduce a model for ATPase assembly and illustrate how DNA is pumped with high force.
Journal Article
Structure of the human clamp loader bound to the sliding clamp: a further twist on AAA+ mechanism
by
Hedglin, Mark
,
Gaubitz, Christl
,
Magrino, Joseph
in
Adenosine triphosphatase
,
Biochemistry
,
Crystal structure
2020
DNA replication requires the sliding clamp, a ring-shaped protein complex that encircles DNA, where it acts as an essential cofactor for DNA polymerases and other proteins. The sliding clamp needs to be actively opened and installed onto DNA by a clamp loader ATPase of the AAA+ family. The human clamp loader Replication Factor C (RFC) and sliding clamp PCNA are both essential and play critical roles in several diseases. Despite decades of study, no structure of human RFC has been resolved. Here, we report the structure of human RFC bound to PCNA by cryo-EM to an overall resolution of ~3.4 Å. The active sites of RFC are fully bound to ATP analogs, which is expected to induce opening of the sliding clamp. However, we observe the complex in a conformation prior to PCNA opening, with the clamp loader ATPase modules forming an over-twisted spiral that is incapable of binding DNA or hydrolyzing ATP. The autoinhibited conformation observed here has many similarities to a previous yeast RFC:PCNA crystal structure, suggesting that eukaryotic clamp loaders adopt a similar autoinhibited state early on in clamp loading. Our results point to a 'Limited Change/Induced Fit' mechanism in which the clamp first opens, followed by DNA binding inducing opening of the loader to release auto-inhibition. The proposed change from an over-twisted to an active conformation reveals a novel regulatory mechanism for AAA+ ATPases. Finally, our structural analysis of disease mutations leads to a mechanistic explanation for the role of RFC in human health. Competing Interest Statement The authors have declared no competing interest. Footnotes * https://www.rcsb.org/structure/6vvo * https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-21405
A thermophilic phage uses a small terminase protein with a fixed helix-turn-helix geometry
by
Hayes, Janelle A
,
Kelch, Brian A
,
Hilbert, Brendan J
in
Adenosine triphosphatase
,
Biochemistry
,
Deoxyribonucleic acid
2019
Tailed bacteriophage use a DNA packaging motor to encapsulate their genome during viral particle assembly. The small terminase (TerS) component acts as a molecular matchmaker by recognizing the viral genome as well as the main motor component, the large terminase (TerL). How TerS binds DNA and the TerL protein remains unclear. Here, we identify the TerS protein of the thermophilic bacteriophage P74-26. TerSP76-26 oligomerizes into a nonamer that binds DNA, stimulates TerL ATPase activity, and inhibits TerL nuclease activity. Our cryo-EM structure shows that TerSP76-26 forms a ring with a wide central pore and radially arrayed helix-turn-helix (HTH) domains. These HTH domains, which are thought to bind DNA by wrapping the helix around the ring, are rigidly held in an orientation distinct from that seen in other TerS proteins. This rigid arrangement of the putative DNA binding domain imposes strong constraints on how TerSP76-26 can bind DNA. Finally, the TerSP76-26 structure lacks the conserved C-terminal β-barrel domain used by other TerS proteins for binding TerL, suggesting that a well-ordered C-terminal β-barrel domain is not necessary for TerS to carry out its function as a matchmaker.
A hyperthermophilic phage decoration protein suggests common evolutionary origin with Herpesvirus Triplex proteins and an anti-CRISPR protein
by
Kelch, Brian A
,
Stone, Nicholas P
,
Hilbert, Brendan J
in
Biochemistry
,
Capsid protein
,
Capsids
2017
Virus capsid proteins reproducibly self-assemble into regularly-shaped, stable shells that protect the viral genome from external environmental assaults, while maintaining the high internal pressure of the tightly packaged viral genome. To elucidate how capsids maintain stability under harsh conditions, we investigated the capsid components of a hyperthermophilic virus, phage P74-26. We determined the structure of a capsid protein gp87 and show that it has the same fold as trimeric decoration proteins that enhance the structural stability of capsids in many other phage, despite lacking significant sequence homology. We also find that gp87 is significantly more stable than its mesophilic homologs, reflecting the high temperature environment in which phage P74-26 thrives. Our analysis of the gp87 structure reveals that the core domain of the decoration protein is conserved in trimeric capsid components across numerous dsDNA viruses, including human pathogens such as Herpesviruses. Moreover, this core -barrel domain is found in the anti-CRISPR protein AcrIIC1, which suggests a mechanism for the evolution of this broad spectrum Cas9 inhibitor. Our work illustrates the principles for increased stability of a thermophilic decoration protein, and extends the evolutionary reach of the core trimeric decoration protein fold.
The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain
by
Hayes, Janelle A
,
Kelch, Brian A
,
Rui-Gang, Xu
in
Adenosine triphosphatase
,
Biochemistry
,
Deoxyribonucleic acid
2016
Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the ATPase that powers DNA translocation and an endonuclease that cleaves the concatemeric genome both at initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage is still mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nucleolysis. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of nucleolysis suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid shell during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the procapsid upon completion of packaging unlocks the nuclease domains to cleave DNA.
Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader
2021
Sliding clamps are ring-shaped protein complexes that are integral to the DNA replication machinery of all life. Sliding clamps are opened and installed onto DNA by clamp loader AAA+ ATPase complexes. However, how a clamp loader opens and closes the sliding clamp around DNA is still unknown. Here, we describe structures of the S. cerevisiae clamp loader Replication Factor C (RFC) bound to its cognate sliding clamp Proliferating Cell Nuclear Antigen (PCNA) en route to successful loading. RFC first binds to PCNA in a dynamic, closed conformation that blocks both ATPase activity and DNA binding. RFC then opens the PCNA ring through a large-scale ‘crab-claw’ expansion of both RFC and PCNA that explains how RFC prefers initial binding of PCNA over DNA. Next, the open RFC:PCNA complex binds DNA and interrogates the primer-template junction using a surprising base-flipping mechanism. Our structures indicate that initial PCNA opening and subsequent closure around DNA do not require ATP hydrolysis, but are driven by binding energy. ATP hydrolysis, which is necessary for RFC release, is triggered by interactions with both PCNA and DNA, explaining RFC’s switch-like ATPase activity. Our work reveals how a AAA+ machine undergoes dramatic conformational changes for achieving binding preference and substrate remodeling.
Principles for enhancing virus capsid capacity and stability from a thermophilic virus capsid structure
2019
The capsids of double-stranded DNA viruses protect the viral genome from the harsh extracellular environment, while maintaining stability against the high internal pressure of packaged DNA. To elucidate how capsids maintain stability in an extreme environment, we used cryoelectron microscopy to determine the capsid structure of the thermostable phage P74-26. We find the P74-26 capsid exhibits an overall architecture that is very similar to those of other tailed bacteriophages, allowing us to directly compare structures to derive the structural basis for enhanced stability. Our structure reveals lasso-like interactions that appear to function like catch bonds. This architecture allows the capsid to expand during genome packaging, yet maintain structural stability. The P74-26 capsid has T=7 geometry despite being twice as large as mesophilic homologs. Capsid capacity is increased through a novel mechanism with a larger, flatter major capsid protein. Our results suggest that decreased icosahedral complexity (i.e. lower T number) leads to a more stable capsid assembly. Footnotes * The icosahedral reconstruction of the P74-26 capsid was further refined using Ewald sphere correction in Frealign, yielding a 2.8-angstrom final reconstruction.