Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Stone-McLean, Jordan"
Sort by:
Augmented Reality as a Telemedicine Platform for Remote Procedural Training
Traditionally, rural areas in many countries are limited by a lack of access to health care due to the inherent challenges associated with recruitment and retention of healthcare professionals. Telemedicine, which uses communication technology to deliver medical services over distance, is an economical and potentially effective way to address this problem. In this research, we develop a new telepresence application using an Augmented Reality (AR) system. We explore the use of the Microsoft HoloLens to facilitate and enhance remote medical training. Intrinsic advantages of AR systems enable remote learners to perform complex medical procedures such as Point of Care Ultrasound (PoCUS) without visual interference. This research uses the HoloLens to capture the first-person view of a simulated rural emergency room (ER) through mixed reality capture (MRC) and serves as a novel telemedicine platform with remote pointing capabilities. The mentor’s hand gestures are captured using a Leap Motion and virtually displayed in the AR space of the HoloLens. To explore the feasibility of the developed platform, twelve novice medical trainees were guided by a mentor through a simulated ultrasound exploration in a trauma scenario, as part of a pilot user study. The study explores the utility of the system from the trainees, mentor, and objective observers’ perspectives and compares the findings to that of a more traditional multi-camera telemedicine solution. The results obtained provide valuable insight and guidance for the development of an AR-supported telemedicine platform.
Developing an Undergraduate Ultrasound Curriculum: A Needs Assessment
Background The introduction of ultrasound into the undergraduate medical school curriculum is gaining momentum in North America. At present, many institutions are teaching ultrasound to undergraduate medical students using a traditional framework designed to instruct practicing clinicians, or have modeled the curriculum on other universities. This approach is not based on educational needs or supported by evidence. Methods Using a descriptive, cross-sectional survey of stakeholder groups, we assessed the perceived relevance of various ultrasound skills and the attitude towards implementing an undergraduate ultrasound curriculum at our university. Results One hundred and fifty survey respondents representing all major stakeholder groups participated. All medical students, 97% of residents and 82% of educators agreed that the introduction of an ultrasound curriculum would enhance medical students' understanding of anatomy and physiology. All clinical medical students and residents, 92% of preclinical medical students, and 82% of educators agreed that the curriculum should also include clinical applications of ultrasound. Participants also indicated their preferences for specific curriculum content based on their perceived needs. Conclusion An integrated undergraduate ultrasound curriculum composed of specific preclinical and clinical applications was deemed appropriate for our university following a comprehensive needs assessment. Other universities planning such curricula should consider employing a needs assessment to provide direction for curriculum need and content.
Expert Facilitated Development of an Objective Assessment Tool for Point-of-Care Ultrasound Performance in Undergraduate Medical Education
With the various applications of point-of-care ultrasound (PoCUS) steadily increasing, many medical schools across North America are incorporating PoCUS training into their undergraduate curricula. The Faculty of Medicine at Memorial University also intends to introduce PoCUS training into its own undergraduate medical program. The proposed approach is to introduce a PoCUS curriculum focusing on anatomy and physiology while developing cognitive and psychomotor skills that are later transferred into clinical applications. This has been the common approach taken by most undergraduate ultrasound programs in the United States. This project highlights the development and the challenges involved in creating an objective assessment tool that meets the unique needs of this proposed undergraduate ultrasound curriculum. After a thorough review of existing literature and input from experts in PoCUS, a prototype global rating scale (GRS) and three exam-specific checklists were created by researchers. The exam-specific checklists include aorta exam, subxiphoid cardiac exam, and focused abdominal exam. A panel of 18 emergency room physicians certified in PoCUS were recruited to evaluate the GRS and three checklists. This was accomplished using a modified Delphi technique. The items were rated on a 5-point Likert scale. If an item received a mean score of less than 4, it was deemed unimportant for the assessment of PoCUS performance in undergraduate medical learners and was excluded. Experts were also encouraged to provide comments and suggest further items to be added to the GRS or checklists. Items were modified according to these comments. All of the edits were then sent back to the experts for revisions. A consensus was achieved after three rounds of surveys, with the final GRS containing nine items. The final aorta checklist contained nine items, and the subxiphoid cardiac and focused abdominal checklists each contained 11 items. By using a modified Delphi technique, we developed a single GRS and three checklists. A panel of independent PoCUS practitioners supports the content validity of these tools. Research is currently ongoing to evaluate their validity for assessing PoCUS competency in undergraduate medical students.