Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
37 result(s) for "Storbeck, Karl-Heinz"
Sort by:
11-Oxygenated C19 Steroids Are the Predominant Androgens in Polycystic Ovary Syndrome
We analyzed the androgen metabolome in women with polycystic ovary syndrome by mass spectrometry, revealing that 11-oxygenated androgens represent the majority of circulating androgen excess.AbstractContext:Androgen excess is a defining feature of polycystic ovary syndrome (PCOS), but the exact origin of hyperandrogenemia remains a matter of debate. Recent studies have highlighted the importance of the 11-oxygenated C19 steroid pathway to androgen metabolism in humans. In this study, we analyzed the contribution of 11-oxygenated androgens to androgen excess in women with PCOS.Methods:One hundred fourteen women with PCOS and 49 healthy control subjects underwent measurement of serum androgens by liquid chromatography-tandem mass spectrometry. Twenty-four–hour urinary androgen excretion was analyzed by gas chromatography-mass spectrometry. Fasting plasma insulin and glucose were measured for homeostatic model assessment of insulin resistance. Baseline demographic data, including body mass index, were recorded.Results:As expected, serum concentrations of the classic androgens testosterone (P < 0.001), androstenedione (P < 0.001), and dehydroepiandrosterone (P < 0.01) were significantly increased in PCOS. Mirroring this, serum 11-oxygenated androgens 11β-hydroxyandrostenedione, 11-ketoandrostenedione, 11β-hydroxytestosterone, and 11-ketotestosterone were significantly higher in PCOS than in control subjects, as was the urinary 11-oxygenated androgen metabolite 11β-hydroxyandrosterone. The proportionate contribution of 11-oxygenated to total serum androgens was significantly higher in patients with PCOS compared with control subjects [53.0% (interquartile range, 48.7 to 60.3) vs 44.0% (interquartile range, 32.9 to 54.9); P < 0.0001]. Obese (n = 51) and nonobese (n = 63) patients with PCOS had significantly increased 11-oxygenated androgens. Serum 11β-hydroxyandrostenedione and 11-ketoandrostenedione correlated significantly with markers of insulin resistance.Conclusions:We show that 11-oxygenated androgens represent the majority of circulating androgens in women with PCOS, with close correlation to markers of metabolic risk.
11βHSD1 Inhibition with AZD4017 Improves Lipid Profiles and Lean Muscle Mass in Idiopathic Intracranial Hypertension
Abstract Background The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) determines prereceptor metabolism and activation of glucocorticoids within peripheral tissues. Its dysregulation has been implicated in a wide array of metabolic diseases, leading to the development of selective 11β-HSD1 inhibitors. We examined the impact of the reversible competitive 11β-HSD1 inhibitor, AZD4017, on the metabolic profile in an overweight female cohort with idiopathic intracranial hypertension (IIH). Methods We conducted a UK multicenter phase II randomized, double-blind, placebo-controlled trial of 12-week treatment with AZD4017. Serum markers of glucose homeostasis, lipid metabolism, renal and hepatic function, inflammation and androgen profiles were determined and examined in relation to changes in fat and lean mass by dual-energy X-ray absorptiometry. Results Patients receiving AZD4017 showed significant improvements in lipid profiles (decreased cholesterol, increased high-density lipoprotein [HDL] and cholesterol/HDL ratio), markers of hepatic function (decreased alkaline phosphatase and gamma-glutamyl transferase), and increased lean muscle mass (1.8%, P < .001). No changes in body mass index, fat mass, and markers of glucose metabolism or inflammation were observed. Patients receiving AZD4017 demonstrated increased levels of circulating androgens, positively correlated with changes in total lean muscle mass. Conclusions These beneficial metabolic changes represent a reduction in risk factors associated with raised intracranial pressure and represent further beneficial therapeutic outcomes of 11β-HSD1 inhibition by AZD4017 in this overweight IIH cohort. In particular, beneficial changes in lean muscle mass associated with AZD4017 may reflect new applications for this nature of inhibitor in the management of conditions such as sarcopenia.
Steroid metabolome analysis in disorders of adrenal steroid biosynthesis and metabolism
Steroid biosynthesis and metabolism are reflected by the serum steroid metabolome and, in even more detail, by the 24-hour urine steroid metabolome, which can provide unique insights into alterations of steroid flow and output indicative of underlying conditions. Mass spectrometry–based steroid metabolome profiling has allowed for the identification of unique multisteroid signatures associated with disorders of steroid biosynthesis and metabolism that can be used for personalized approaches to diagnosis, differential diagnosis, and prognostic prediction. Additionally, steroid metabolome analysis has been used successfully as a discovery tool, for the identification of novel steroidogenic disorders and pathways as well as revealing insights into the pathophysiology of adrenal disease. Increased availability and technological advances in mass spectrometry–based methodologies have refocused attention on steroid metabolome profiling and facilitated the development of high-throughput steroid profiling methods soon to reach clinical practice. Furthermore, steroid metabolomics, the combination of mass spectrometry–based steroid analysis with machine learning–based approaches, has facilitated the development of powerful customized diagnostic approaches. In this review, we provide a comprehensive up-to-date overview of the utility of steroid metabolome analysis for the diagnosis and management of inborn disorders of steroidogenesis and autonomous adrenal steroid excess in the context of adrenal tumors.
11-Ketotestosterone and 11-Ketodihydrotestosterone in Castration Resistant Prostate Cancer: Potent Androgens Which Can No Longer Be Ignored
Dihydrotestosterone (DHT) is regarded as the most potent natural androgen and is implicated in the development and progression of castration resistant prostate cancer (CRPC). Under castrate conditions, DHT is produced from the metabolism of the adrenal androgen precursors, DHEA and androstenedione. Recent studies have shown that the adrenal steroid 11β-hydroxyandrostenedione (11OHA4) serves as the precursor to the androgens 11-ketotestosterone (11KT) and 11-ketodihydrotestosterone (11KDHT). In this study we comprehensively assess the androgenic activity of 11KT and 11KDHT. This is the first study, to our knowledge, to show that 11KT and 11KDHT, like T and DHT, are potent and efficacious agonists of the human androgen receptor (AR) and induced both the expression of representative AR-regulated genes as well as cellular proliferation in the androgen dependent prostate cancer cell lines, LNCaP and VCaP. Proteomic analysis revealed that 11KDHT regulated the expression of more AR-regulated proteins than DHT in VCaP cells, while in vitro conversion assays showed that 11KT and 11KDHT are metabolized at a significantly lower rate in both LNCaP and VCaP cells when compared to T and DHT, respectively. Our findings show that 11KT and 11KDHT are bona fide androgens capable of inducing androgen-dependant gene expression and cell growth, and that these steroids have the potential to remain active longer than T and DHT due to the decreased rate at which they are metabolised. Collectively, our data demonstrates that 11KT and 11KDHT likely play a vital, but overlooked, role in the development and progression of CRPC.
Modified-Release and Conventional Glucocorticoids and Diurnal Androgen Excretion in Congenital Adrenal Hyperplasia
Context:The classic androgen synthesis pathway proceeds via dehydroepiandrosterone, androstenedione, and testosterone to 5α-dihydrotestosterone. However, 5α-dihydrotestosterone synthesis can also be achieved by an alternative pathway originating from 17α-hydroxyprogesterone (17OHP), which accumulates in congenital adrenal hyperplasia (CAH). Similarly, recent work has highlighted androstenedione-derived 11-oxygenated 19-carbon steroids as active androgens, and in CAH, androstenedione is generated directly from 17OHP. The exact contribution of alternative pathway activity to androgen excess in CAH and its response to glucocorticoid (GC) therapy is unknown.Objective:We sought to quantify classic and alternative pathway-mediated androgen synthesis in CAH, their diurnal variation, and their response to conventional GC therapy and modified-release hydrocortisone.Methods:We used urinary steroid metabolome profiling by gas chromatography–mass spectrometry for 24-hour steroid excretion analysis, studying the impact of conventional GCs (hydrocortisone, prednisolone, and dexamethasone) in 55 adults with CAH and 60 controls. We studied diurnal variation in steroid excretion by comparing 8-hourly collections (23:00–7:00, 7:00–15:00, and 15:00–23:00) in 16 patients with CAH taking conventional GCs and during 6 months of treatment with modified-release hydrocortisone, Chronocort.Results:Patients with CAH taking conventional GCs showed low excretion of classic pathway androgen metabolites but excess excretion of the alternative pathway signature metabolites 3α,5α-17-hydroxypregnanolone and 11β-hydroxyandrosterone. Chronocort reduced 17OHP and alternative pathway metabolite excretion to near-normal levels more consistently than other GC preparations.Conclusions:Alternative pathway-mediated androgen synthesis significantly contributes to androgen excess in CAH. Chronocort therapy appears superior to conventional GC therapy in controlling androgen synthesis via alternative pathways through attenuation of their major substrate, 17OHP.We studied diurnal urinary steroid excretion in glucocorticoid-treated patients with congenital adrenal hyperplasia and found increased alternative pathway androgen synthesis that was ameliorated by modified-release hydrocortisone.
Clinical and Hormonal Profiles Correlate With Molecular Characteristics in Patients With 11β-Hydroxylase Deficiency
Abstract Background Given the rarity of 11β-hydroxylase deficiency (11βOHD), there is a paucity of data about the differences in clinical and biochemical characteristics of classic (C-11βOHD) and nonclassic 11βOHD (NC-11βOHD). Objective To characterize a multicenter pediatric cohort with 11βOHD. Method The clinical and biochemical characteristics were retrospectively retrieved. CYP11B1 gene sequencing was performed. Seventeen plasma steroids were quantified by liquid chromatography-mass spectrometry and compared to that of controls. Results 102 patients (C-11βOHD, n = 92; NC-11βOHD, n = 10) from 76 families (46,XX; n = 53) had biallelic CYP11B1 mutations (novel 9 out of 30). Five 46,XX patients (10%) were raised as males. Nineteen patients (19%) had initially been misdiagnosed with 21-hydroxylase deficiency. Female adult height was 152 cm [−1.85 SD score (SDS)] and male 160.4 cm (−2.56 SDS).None of the NC-11βOHD girls had ambiguous genitalia (C-11βOHD 100%), and none of the NC-11βOHD patients were hypertensive (C-11βOHD 50%). Compared to NC-11βOHD, C-11βOHD patients were diagnosed earlier (1.33 vs 6.9 years; P < 0.0001), had higher bone age-to-chronological age (P = 0.04) and lower adult height (−2.46 vs −1.32 SDS; P = 0.05). The concentrations of 11-oxygenated androgens and 21-deoxycortisol were low in all patients. The baseline ACTH and stimulated cortisol were normal in NC-11βOHD. Baseline cortisol; cortisone; 11-deoxycortisol; 11-deoxycorticosterone and corticosterone concentrations; and 11-deoxycortisol/cortisol, 11-deoxycorticosterone/cortisol, and androstenedione/cortisol ratios were higher in C-11βOHD than NC-11βOHD patients (P < 0.05). The 11-deoxycortisol/cortisol ratio >2.2, <1.5, and <0.1 had 100% specificity to segregate C-11βOHD, NC-11βOHD, and control groups. Conclusion NC-11βOHD can escape from clinical attention due to relatively mild clinical presentation. However, steroid profiles enable the diagnosis, differential diagnosis, and subtyping of 11βOHD.
Bidirectional crosstalk between Hypoxia-Inducible Factor and glucocorticoid signalling in zebrafish larvae
In the last decades in vitro studies highlighted the potential for crosstalk between Hypoxia-Inducible Factor-(HIF) and glucocorticoid-(GC) signalling pathways. However, how this interplay precisely occurs in vivo is still debated. Here, we use zebrafish larvae (Danio rerio) to elucidate how and to what degree hypoxic signalling affects the endogenous glucocorticoid pathway and vice versa, in vivo. Firstly, our results demonstrate that in the presence of upregulated HIF signalling, both glucocorticoid receptor (Gr) responsiveness and endogenous cortisol levels are repressed in 5 days post fertilisation larvae. In addition, despite HIF activity being low at normoxia, our data show that it already impedes both glucocorticoid activity and levels. Secondly, we further analysed the in vivo contribution of glucocorticoids to HIF activity. Interestingly, our results show that both glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) play a key role in enhancing it. Finally, we found indications that glucocorticoids promote HIF signalling via multiple routes. Cumulatively, our findings allowed us to suggest a model for how this crosstalk occurs in vivo.
Misreporting contraceptive use and the association of peak study progestin levels with weight and BMI among women randomized to the progestin-only injectable contraceptives DMPA-IM and NET-EN
Progestin-only injectable contraceptives, mainly depo-medroxyprogesterone acetate intramuscular (DMPA-IM), are the most widely used contraceptive methods in sub-Saharan Africa. Insufficient robust data on their relative side-effects and serum concentrations limit understanding of reported outcomes in contraception trials. The WHICH clinical trial randomized HIV-negative women to DMPA-IM (n = 262) or norethisterone enanthate (NET-EN) (n = 259) at two South African sites between 2018–2019. We measured serum concentrations of study and non-study progestins at initiation (D0) and peak serum levels, one week after the 24-week injection [25 weeks (25W)], (n = 435) and investigated associations between study progestin levels, and BMI and weight of participants. Peak median serum concentrations were 6.59 (IQR 4.80; 8.70) nM for medroxyprogesterone (MPA) (n = 161) and 13.6 (IQR 9.01; 19.0) nM for norethisterone (NET) (n = 155). MPA was the most commonly quantifiable non-study progestin at D0 in both arms (54%) and at 25W in the NET-EN arm (27%), followed by NET at D0 in both arms (29%) and at 25W in the DMPA-IM arm (19%). Levonorgestrel was quantifiable in both arms [D0 (6.9%); 25W (3.4%)], while other progestins were quantifiable in ≤ 14 participants. Significant negative time-varying associations were detected between MPA and NET concentrations and weight and BMI in both contraceptive arms and a significant increase was detected for peak serum progestin concentrations for normal weight versus obese women. Contraceptive-related reported outcomes are likely confounded by MPA, more so than NET, with reported DMPA-IM effects likely underestimated, at sites where DMPA-IM is widely used, due to misreporting of contraceptive use before and during trials, and ‘tail’ effects of DMPA-IM use more than six months before trial enrolment. Peak serum levels of MPA and NET are negatively associated with BMI and weight, suggesting another source of variability between trial outcomes and a potential increase in side-effects for normal weight versus overweight and obese women. Trail registration: The clinical trial was registered with the Pan African Clinical Trials Registry (PACTR 202009758229976 ).
Revisiting Classical 3β-hydroxysteroid Dehydrogenase 2 Deficiency: Lessons from 31 Pediatric Cases
Abstract Context The clinical effects of classical 3β-hydroxysteroid dehydrogenase 2 (3βHSD2) deficiency are insufficiently defined due to a limited number of published cases. Objective To evaluate an integrated steroid metabolome and the short- and long-term clinical features of 3βHSD2 deficiency. Design Multicenter, cross-sectional study. Setting Nine tertiary pediatric endocrinology clinics across Turkey. Patients Children with clinical diagnosis of 3βHSD2 deficiency. Main Outcome Measures Clinical manifestations, genotype-phenotype-metabolomic relations. A structured questionnaire was used to evaluate the data of patients with clinical 3βHSD2 deficiency. Genetic analysis of HSD3B2 was performed using Sanger sequencing. Novel HSD3B2 mutations were studied in vitro. Nineteen plasma adrenal steroids were measured using LC-MS/MS. Results Eleven homozygous HSD3B2 mutations (6 novel) were identified in 31 children (19 male/12 female; mean age: 6.6 ± 5.1 yrs). The patients with homozygous pathogenic HSD3B2 missense variants of > 5% of wild type 3βHSD2 activity in vitro had a non-salt–losing clinical phenotype. Ambiguous genitalia was an invariable feature of all genetic males, whereas only 1 of 12 female patients presented with virilized genitalia. Premature pubarche was observed in 78% of patients. In adolescence, menstrual irregularities and polycystic ovaries in females and adrenal rest tumors and gonadal failure in males were observed. Conclusions Genetically-documented 3βHSD2 deficiency includes salt-losing and non-salt–losing clinical phenotypes. Spared mineralocorticoid function and unvirilized genitalia in females may lead to misdiagnosis and underestimation of the frequency of 3βHSD2 deficiency. High baseline 17OHPreg to cortisol ratio and low 11-oxyandrogen concentrations by LC-MS/MS unequivocally identifies patients with 3βHSD2 deficiency.
The injectable contraceptives depot medroxyprogesterone acetate and norethisterone enanthate substantially and differentially decrease testosterone and sex hormone binding globulin levels: A secondary study from the WHICH randomized clinical trial
HIV acquisition risk with norethisterone (NET) enanthate (NET-EN) is reportedly less than for depo-medroxyprogesterone acetate intramuscular (DMPA-IM). We investigated the effects of these progestin-only injectable contraceptives on serum testosterone and sex hormone binding globulin (SHBG) levels, since these may play a role in sexual behavior and HIV acquisition. The open-label WHICH clinical trial, conducted at two sites in South Africa from 2018–2019, randomized HIV-negative women aged 18–40 years to 150 mg DMPA-IM 12-weekly (n = 262) or 200 mg NET-EN 8-weekly (n = 259). We measured testosterone by UHPLC-MS/MS and SHBG by immunoassay in matched pairs of serum samples collected at baseline (D0) and at peak serum progestin levels at 25 weeks post initiation (25W) (n = 214–218 pairs). Both contraceptives substantially decreased, from D0 to 25W, the total testosterone [DMPA-IM D0 0.560, 25W 0.423 nmol/L, -24.3% (p < 0.0001); NET-EN D0 0.551, 25W 0.253 nmol/L, -54.1%, (p < 0.0001)], SHBG [DMPA-IM D0 45.0, 25W 32.7 nmol/L, -29.8% (p < 0.0001); NET-EN D0 50.2, 25W 17.6 nmol/L, -65.1% (p < 0.0001)], and calculated free testosterone levels [DMPA-IM D0 6.87, 25W 5.38 pmol/L, -17.2% (p = 0.0371); NET-EN D0 6.00, 25W 3.70, -40.0% (p < 0.0001)]. After adjusting for change from D0, the total testosterone, SHBG and calculated free testosterone levels were significantly higher for DMPA-IM than NET-EN (64.9%, p < 0.0001; 101.2%, p < 0.0001; and 38.0%, p = 0.0120, respectively). The substantial and differential decrease in testosterone and SHBG levels does not explain our previous finding of no detected decrease in risky sexual behavior or sexual function for DMPA-IM or NET-EN users from D0 to 25W. Medroxyprogesterone (MPA) and NET are androgenic and are both present in molar excess over testosterone and SHBG concentrations at 25W. Any within or between contraceptive group androgenic effects on behavior in the brain are likely dominated by the androgenic activities of MPA and NET and not by the decreased endogenous testosterone levels. The clinical trial was registered with the Pan African Clinical Trials Registry (PACTR 202009758229976).