Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
41
result(s) for
"Strambio-De-Castillia, Caterina"
Sort by:
Towards community-driven metadata standards for light microscopy: tiered specifications extending the OME model
2021
Rigorous record-keeping and quality control are required to ensure the quality, reproducibility and value of imaging data. The 4DN Initiative and BINA here propose light Microscopy Metadata Specifications that extend the OME Data Model, scale with experimental intent and complexity, and make it possible for scientists to create comprehensive records of imaging experiments.
Journal Article
Evidence for biphasic uncoating during HIV-1 infection from a novel imaging assay
by
Luban, Jeremy
,
De Castillia, Caterina Strambio
,
Sluis-Cremer, Nicolas
in
Acquired immune deficiency syndrome
,
AIDS
,
Antibodies
2013
Background
Uncoating of the HIV-1 core plays a critical role during early post-fusion stages of infection but is poorly understood. Microscopy-based assays are unable to easily distinguish between intact and partially uncoated viral cores.
Results
In this study, we used 5-ethynyl uridine (EU) to label viral-associated RNA during HIV production. At early time points after infection with EU-labeled virions, the viral-associated RNA was stained with an EU-specific dye and was detected by confocal microscopy together with viral proteins. We observed that detection of the viral-associated RNA was specific for EU-labeled virions, was detected only after viral fusion with target cells, and occurred after an initial opening of the core.
In vitro
staining of cores showed that the opening of the core allowed the small molecule dye, but not RNase A or antibodies, inside. Also, staining of the viral-associated RNA, which is co-localized with nucleocapsid, decays over time after viral infection. The decay rate of RNA staining is dependent on capsid (CA) stability, which was altered by CA mutations or a small molecule inducer of HIV-1 uncoating. While the staining of EU-labeled RNA was not affected by inhibition of reverse transcription, the kinetics of core opening of different CA mutants correlated with initiation of reverse transcription. Analysis of the E45A CA mutant suggests that initial core opening is independent of complete capsid disassembly.
Conclusions
Taken together, our results establish a novel RNA accessibility-based assay that detects an early event in HIV-1 uncoating and can be used to further define this process.
Journal Article
QUAREP-LiMi: a community endeavor to advance quality assessment and reproducibility in light microscopy
by
Faklaris Orestis
,
Rasse, Tobias M
,
Mitkovski Miso
in
Control equipment
,
Image acquisition
,
Image processing
2021
The community-driven initiative Quality Assessment and Reproducibility for Instruments & Images in Light Microscopy (QUAREP-LiMi) wants to improve reproducibility for light microscopy image data through quality control (QC) management of instruments and images. It aims for a common set of QC guidelines for hardware calibration and image acquisition, management and analysis.
Journal Article
SnapFISH: a computational pipeline to identify chromatin loops from multiplexed DNA FISH data
2023
Multiplexed DNA fluorescence in situ hybridization (FISH) imaging technologies have been developed to map the folding of chromatin fibers at tens of nanometers and up to several kilobases in resolution in single cells. However, computational methods to reliably identify chromatin loops from such imaging datasets are still lacking. Here we present a Single-Nucleus Analysis Pipeline for multiplexed DNA FISH (SnapFISH), to process the multiplexed DNA FISH data and identify chromatin loops. SnapFISH can identify known chromatin loops from mouse embryonic stem cells with high sensitivity and accuracy. In addition, SnapFISH obtains comparable results of chromatin loops across datasets generated from diverse imaging technologies. SnapFISH is freely available at
https://github.com/HuMingLab/SnapFISH
.
Multiplexed DNA FISH technologies are powerful tools to reveal chromatin spatial organisation. Here, the authors developed SnapFISH, a computational pipeline to identify chromatin loops from multiplexed DNA FISH data.
Journal Article
Micro-Meta App: an interactive tool for collecting microscopy metadata based on community specifications
by
Öztürk, Serkan Utku
,
Faklaris Orestis
,
Kirli Koray
in
Computer programs
,
Metadata
,
Microscopy
2021
For quality, interpretation, reproducibility and sharing value, microscopy images should be accompanied by detailed descriptions of the conditions that were used to produce them. Micro-Meta App is an intuitive, highly interoperable, open-source software tool that was developed in the context of the 4D Nucleome (4DN) consortium and is designed to facilitate the extraction and collection of relevant microscopy metadata as specified by the recent 4DN-BINA-OME tiered-system of Microscopy Metadata specifications. In addition to substantially lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training purposes.Micro-Meta App is an intuitive, highly interoperable, open-source software tool designed to facilitate the extraction and collection of relevant microscopy metadata as specified by recent community guidelines.
Journal Article
Potent inhibition of HIV-1 by TRIM5-cyclophilin fusion proteins engineered from human components
by
Grütter, Christian
,
Luban, Jeremy
,
Pertel, Thomas
in
Adoptive Transfer
,
Amino Acid Sequence
,
Animals
2009
New World monkeys of the genus Aotus synthesize a fusion protein (AoT5Cyp) containing tripartite motif-containing 5 (TRIM5) and cyclophilin A (CypA) that potently blocks HIV-1 infection. We attempted to generate a human HIV-1 inhibitor modeled after AoT5Cyp, by fusing human CypA to human TRIM5 (hT5Cyp). Of 13 constructs, 3 showed substantial HIV-1-inhibitory activity when expressed in human cell lines. This activity required capsid binding by CypA and correlated with CypA linkage to the TRIM5a capsid-specificity determinant and the ability to form cytoplasmic bodies. CXCR4- and CCR5-tropic HIV-1 clones and primary isolates were inhibited from infecting multiple human macrophage and T cell lines and primary cells by hT5Cyp, as were HIV-2ROD, SIVAGMtan, FIVPET, and a circulating HIV-1 isolate previously reported to be AoT5Cyp resistant. The anti-HIV-1 activity of hT5Cyp was surprisingly more effective than that of the well-characterized rhesus TRIM5alpha, especially in T cells. hT5Cyp also blocked HIV-1 infection of primary CD4+ T cells and macrophages and conferred a survival advantage to these cells without disrupting their function. Extensive attempts to elicit HIV-1 resistance to hT5Cyp were unsuccessful. Finally, Rag2-/-gammac-/- mice were engrafted with human CD4+ T cells that had been transduced by optimized lentiviral vectors bearing hT5Cyp. Upon challenge with HIV-1, these mice showed decreased viremia and productive infection in lymphoid organs and preserved numbers of human CD4+ T cells. We conclude that hT5Cyp is an extraordinarily robust inhibitor of HIV-1 replication and a promising anti-HIV-1 gene therapy candidate.
Journal Article