Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
15
result(s) for
"Stratonovitch, P"
Sort by:
ELPIS: A Dataset of Local-Scale Daily Climate Scenarios for Europe
by
DONATELLI Marcello
,
STRATONOVITCH Marc
,
BARUTH Bettina
in
Atmospheric models
,
Climate change
,
Climate models
2010
We developed a dataset of local-scale daily climate scenarios for Europe, called ELPIS. This dataset is based on 25 km grids of interpolated daily precipitation, minimum and maximum temperatures and radiation from the European Crop Growth Monitoring System (CGMS) meteorological dataset and climate predictions from the multi-model ensemble of 15 global climate models that were used in the IPCC 4th Assessment Report. The site parameters for the distributions of climatic variables have been estimated by the LARS-WG weather generator for nearly 12 000 grids for the period 1982–2008. Using changes in climate predicted by global climate models, we perturbed site parameters for the baseline climate to generate local-scale daily climate scenarios for the future under several emission scenarios. The ability of LARS-WG to reproduce daily weather for the period 1982–2008 was assessed using statistical tests. This prototype dataset was designed for use in conjunction with process-based impact models (e.g. crop simulation models) for the assessment of climate change impacts in Europe. A climate scenario generated by LARS-WG for a grid represents daily weather at a typical site from this grid that is used for agricultural production. This makes it different from the recently developed 25 km gridded dataset for Europe (E-OBS), which gives the best estimate of grid box averages to enable direct comparison with regional climate models.
Publication
Adapting wheat ideotypes for climate change
2015
This study describes integration of climate change projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble with the LARS-WG weather generator, which delivers an attractive option for the downscaling of large-scale climate projections from global climate models (GCMs) to local-scale climate scenarios for impact assessments. A subset of 18 GCMs from the CMIP5 ensemble and 2 Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, were integrated with LARS-WG. For computationally demanding impact assessments, where it is not practical to explore all possible combinations of GCM × RCP, a climate sensitivity index could be used to select a subset of GCMs which preserves the range of uncertainty found in CMIP5. This would allow us to quantify uncertainty in predictions of impacts resulting from the CMIP5 ensemble by conducting fewer simulation experiments. In a case study, we describe the use of the Sirius wheat simulation model to design in silico wheat ideotypes that are optimised for future climates in Europe, sampling uncertainty in GCMs, emission scenarios, time periods and European locations with contrasting climates. Two contrasting GCMs were selected for the analysis, 'hot' HadGEM2-ES and 'cool' GISS-E2-R-CC. Despite large uncertainty in future climate projections, we were able to identify target traits for wheat improvement which may assist breeding for high-yielding wheat cultivars with increased yield stability.
Journal Article
Rising Temperatures Reduce Global Wheat Production
2015
Crop models are essential tools for assessing the threat of climate change to local and global food production. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 degrees C to 32◦ degrees C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each degree C of further temperature increase and become more variable over space and time.
Journal Article
The uncertainty of crop yield projections is reduced by improved temperature response functions
2017
Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.
Journal Article
Letter : Rising temperatures reduce global wheat production
2015
Crop models are essential tools for assessing the threat of climate change to local and global food production(1). Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature(2). Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 degrees C to 32 degrees C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each degrees C of further temperature increase and become more variable over space and time.
Journal Article
Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces
by
University of Florence, Italy
,
Luke / Luonnonvarat ja biotuotanto / Tuotannon ympäristövaikutukset / Ilmastovaikutukset
,
Rothamsted Research, UK
2015
Journal Article
Rising temperatures reduce global wheat production
by
Plant Production Research ; Agrifood Research Finland
,
Shcherbak, I
,
CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS)
2015
Crop models are essential tools for assessing the threat of climate change to local and global food production(1). Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature(2). Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 degrees C to 32 degrees C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each degrees C of further temperature increase and become more variable over space and time.
Journal Article
Statistical Analysis of Large Simulated Yield Datasets for Studying Climate Effects
2015
Many simulation studies have been carried out to predict the effect of climate change on crop yield. Typically, in such study, one or several crop models are used to simulate series of crop yield values for different climate scenarios corresponding to different hypotheses of temperature, CO2 concentration, and rainfall changes. These studies usually generate large datasets including thousands of simulated yield data. The structure of these datasets is complex because they include series of yield values obtained with different mechanistic crop models for different climate scenarios defined from several climatic variables (temperature, CO2 etc.). Statistical methods can play a big part for analyzing large simulated crop yield datasets, especially when yields are simulated using an ensemble of crop models. A formal statistical analysis is then needed in order to estimate the effects of different climatic variables on yield, and to describe the variability of these effects across crop models. Statistical methods are also useful to develop meta-models i.e., statistical models summarizing complex mechanistic models. The objective of this paper is to present a random-coefficient statistical model (mixed-effects model) for analyzing large simulated crop yield datasets produced by the international project AgMip for several major crops. The proposed statistical model shows several interesting features; i) it can be used to estimate the effects of several climate variables on yield using crop model simulations, ii) it quantities the variability of the estimated climate change effects across crop models, ii) it quantifies the between-year yield variability, iv) it can be used as a meta-model in order to estimate effects of new climate change scenarios without running again the mechanistic crop models. The statistical model is first presented in details, and its value is then illustrated in a case study where the effects of climate change scenarios on different crops are compared. See more from this Division: Special Sessions See more from this Session: Symposium--Perspectives on Climate Effects on Agriculture: The International Efforts of AgMIP
Publication