Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
55
result(s) for
"Strauss, Sandra J."
Sort by:
Lenvatinib with etoposide plus ifosfamide in patients with refractory or relapsed osteosarcoma (ITCC-050): a multicentre, open-label, multicohort, phase 1/2 study
by
Melcon, Soledad Gallego
,
Locatelli, Franco
,
Lervat, Cyril
in
Adverse events
,
Bone cancer
,
Cancer therapies
2021
Tyrosine kinase inhibitors have shown activity in osteosarcoma and might enhance the efficacy of chemotherapy. We aimed to determine the recommended phase 2 dose and antitumour activity of lenvatinib with etoposide plus ifosfamide in patients with refractory or relapsed osteosarcoma.
This multicentre, open-label, multicohort, phase 1/2 trial was done at 17 hospitals in six countries. Eligible patients were aged 2–25 years, had relapsed or refractory osteosarcoma, measurable or evaluable disease per Response Evaluation Criteria in Solid Tumors version 1.1, Lansky play–performance score or Karnofsky performance score of 50% or higher, up to one previous VEGF or VEGF receptor-targeted therapy, and a life expectancy of at least 3 months. This study includes a combination dose-finding phase 1 part (cohort 3A) and a phase 2 combination expansion in patients with osteosarcoma (cohort 3B). Lenvatinib was administered orally at a starting dose of 11 mg/m2 per day, capped at 24 mg per day, and etoposide (100 mg/m2 per day) plus ifosfamide (3000 mg/m2 per day) were administered intravenously on days 1–3 of each 21-day cycle for a maximum of five cycles. Lenvatinib monotherapy continued after these five cycles until disease progression, toxic effects, or patient choice to discontinue. The phase 1 primary endpoint was to determine the recommended phase 2 dose by evaluating dose-limiting toxicity and the phase 2 primary endpoint was progression-free survival at 4 months. Progression-free survival was measured in the full analysis set, which included all patients enrolled for efficacy outcomes; safety was assessed in all patients who received any study drug. This study is registered with ClinicalTrials.gov, NCT02432274.
30 patients were screened for enrolment into cohort 3A between May 9, 2016, and June 3, 2019, and 22 patients for enrolment into cohort 3B between Sept 13, 2018, and July 18, 2019. Eight patients from cohort 3A and two from cohort 3B were ineligible for enrolment in the study. In phase 1, dose-limiting toxicities were observed in three patients (one in the lenvatinib 11 mg/m2 combination group and two in the 14 mg/m2 combination group) and the recommended phase 2 dose was determined as lenvatinib 14 mg/m2 per day (with daily dose cap of 24 mg) and etoposide 100 mg/m2 per day plus ifosfamide 3000 mg/m2 per day administered intravenously on days 1–3 of each 21-day cycle for a maximum of five cycles. 35 patients from phase 1 (cohort 3A; n=15) and phase 2 (cohort 3B; n=20) were treated at the recommended phase 2 dose and their results were pooled. Progression-free survival at 4 months was 51% (95% CI 34–69) in 18 of 35 patients per the binomial estimate. The most common grade 3–4 treatment-emergent adverse events were neutropenia (27 [77%] of 35), thrombocytopenia (25 [71%]), anaemia (19 [54%]), and decreased white blood cell count (19 [54%]). 26 [74%] of 35 patients had serious treatment-emergent adverse events and no treatment-related deaths occurred.
Lenvatinib with etoposide plus ifosfamide shows promising antitumour activity with no new safety signals in patients with refractory and relapsed osteosarcoma. These findings warrant further investigation in an ongoing randomised phase 2 study (NCT04154189).
Eisai and Merck Sharp & Dohme.
Journal Article
Therapeutic vulnerability to PARP1,2 inhibition in RB1-mutant osteosarcoma
by
Ahmed, Ritika-Mahmuda
,
Denman, Milly
,
Zoumpoulidou, Georgia
in
13/106
,
631/67/1798
,
692/4028/67/1059/602
2021
Loss-of-function mutations in the
RB1
tumour suppressor are key drivers in cancer, including osteosarcoma.
RB1
loss-of-function compromises genome-maintenance and hence could yield vulnerability to therapeutics targeting such processes. Here we demonstrate selective hypersensitivity to clinically-approved inhibitors of Poly-ADP-Polymerase1,2 inhibitors (PARPi) in RB1-defective cancer cells, including an extended panel of osteosarcoma-derived lines. PARPi treatment results in extensive cell death in RB1-defective backgrounds and prolongs survival of mice carrying human RB1-defective osteosarcoma grafts. PARPi sensitivity is not associated with canonical homologous recombination defect (HRd) signatures that predict PARPi sensitivity in cancers with
BRCA1,2
loss, but is accompanied by rapid activation of DNA replication checkpoint signalling, and active DNA replication is a prerequisite for sensitivity. Importantly, sensitivity in backgrounds with natural or engineered RB1 loss surpasses that seen in
BRCA
-mutated backgrounds where PARPi have established clinical benefit. Our work provides evidence that PARPi sensitivity extends beyond cancers identifiable by HRd and advocates PARP1,2 inhibition as a personalised strategy for
RB1
-mutated osteosarcoma and other cancers.
RB1 mutations are seen in 40-60% of sporadic osteosarcoma. Here, the authors demonstrate a selective sensitivity to PARP inhibitors in RB1-mutated osteosarcoma-derived cell lines that is not associated with canonical signatures indicative of a homologous recombination defect.
Journal Article
Outcomes from a mechanistic biomarker multi-arm and randomised study of liposomal MTP-PE (Mifamurtide) in metastatic and/or recurrent osteosarcoma (EuroSarc-Memos trial)
by
Barnes, David J.
,
Ferrari, Stefano
,
Blay, Jean-Yves
in
Acetylmuramyl-Alanyl-Isoglutamine - analogs & derivatives
,
Antimitotic agents
,
Antineoplastic agents
2022
The phase III clinical study of adjuvant liposomal muramyl tripeptide (MTP-PE) in resected high-grade osteosarcoma (OS) documented positive results that have been translated into regulatory approval, supporting initial promise for innate immune therapies in OS. There remains, however, no new approved treatment such as MTP-PE for either metastatic or recurrent OS. Whilst the addition of different agents, including liposomal MTP-PE, to surgery for metastatic or recurrent high-grade osteosarcoma has tried to improve response rates, a mechanistic hiatus exists in terms of a detailed understanding the therapeutic strategies required in advanced disease. Here we report a Bayesian designed multi-arm, multi-centre, open-label phase II study with randomisation in patients with metastatic and/or recurrent OS, designed to investigate how patients with OS might respond to liposomal MTP-PE, either given alone or in combination with ifosfamide. Despite the trial closing because of poor recruitment within the allocated funding period, with no objective responses in eight patients, we report the design and feasibility outcomes for patients registered into the trial. We demonstrate the feasibility of the Bayesian design, European collaboration, tissue collection with genomic analysis and serum cytokine characterisation. Further mechanistic investigation of liposomal MTP-PE alone and in combination with other agents remains warranted in metastatic OS.
Journal Article
Prognostic Factors in Newly Diagnosed High‐Grade Osteosarcoma—A Systematic Review
by
Tirtei, Elisa
,
Oliveira, Joana F.
,
Rasool, Ayesha
in
Alkaline phosphatase
,
Biomarkers
,
Biomarkers, Tumor
2025
Introduction Pretreatment prognostic factors in newly diagnosed osteosarcoma are important for clinical management and stratifying patients in clinical trials. Such factors include the presence of metastases, primary tumor size, and site. Factors surrounded by controversy include pathological fracture, histologic subtype, and P‐glycoprotein expression. No prognostic tumor biomarker has been established. We performed a systematic review with the aim to compile available evidence for pretreatment prognostic factors and define optimal cut‐off values for patient stratification or further validation in the upcoming European FOSTER‐CabOS trial. Methods Predefined search terms were used to search PubMed, Web‐of‐science, and Embase for all studies investigating pretreatment prognostic factors in newly diagnosed osteosarcoma patients published 2000–2023. After applying strict inclusion and exclusion criteria, 49 papers were included. Results We found 14 factors investigated in at least two separate studies or in a single study using one discovery and at least one validation cohort. Conclusions We confirmed the prognostic value of patient age, presence of metastasis, tumor size, and site (axial vs. appendicular). Future studies of these factors should focus on specific patient populations and defining optimal cut‐off values. Although serum level of alkaline phosphatase and lactate dehydrogenase were associated with outcome, it remains unclear if they are independent of other prognostic factors. The prognostic value remains unclear for sex, pathological fracture, histologic subtype, and P‐glycoprotein expression. We could not establish any new prognostic biomarker. However, circulating tumor DNA in plasma and the G1/G2 RNA signature in diagnostic tumor biopsies show promise and will be further validated in the upcoming FOSTER‐CabOS trial.
Journal Article
Osteosarcoma
by
Bielack, Stefan S.
,
Flanagan, Adrienne M.
,
Janeway, Katherine A.
in
631/67/1344
,
631/67/1798
,
631/67/2324
2022
Osteosarcoma is the most common primary malignant tumour of the bone. Osteosarcoma incidence is bimodal, peaking at 18 and 60 years of age, and is slightly more common in males. The key pathophysiological mechanism involves several possible genetic drivers of disease linked to bone formation, causing malignant progression and metastasis. While there have been significant improvements in the outcome of patients with localized disease, with event-free survival outcomes exceeding 60%, in patients with metastatic disease, event-free survival outcomes remain poor at less than 30%. The suspicion of osteosarcoma based on radiographs still requires pathological evaluation of a bone biopsy specimen for definitive diagnosis and CT imaging of the chest should be performed to identify lung nodules. So far, population-based screening and surveillance strategies have not been implemented due to the rarity of osteosarcoma and the lack of reliable markers. Current screening focuses only on groups at high risk such as patients with genetic cancer predisposition syndromes. Management of osteosarcoma requires a multidisciplinary team of paediatric and medical oncologists, orthopaedic and general surgeons, pathologists, radiologists and specialist nurses. Survivors of osteosarcoma require specialized medical follow-up, as curative treatment consisting of chemotherapy and surgery has long-term adverse effects, which also affect the quality of life of patients. The development of osteosarcoma model systems and related research as well as the evaluation of new treatment approaches are ongoing to improve disease outcomes, especially for patients with metastases.
Osteosarcoma is the most common primary malignant tumour of the bone. This Primer by Gorlick and colleagues summarizes the epidemiology, mechanisms, diagnosis and treatment of this disorder as well as the quality of life of patients and open research questions.
Journal Article
Gemcitabine and docetaxel versus doxorubicin as first-line treatment in previously untreated advanced unresectable or metastatic soft-tissue sarcomas (GeDDiS): a randomised controlled phase 3 trial
by
Benson, Charlotte
,
Marples, Maria
,
Woll, Penella J
in
Adult
,
Antineoplastic Combined Chemotherapy Protocols - administration & dosage
,
Antineoplastic Combined Chemotherapy Protocols - adverse effects
2017
For many years, first-line treatment for locally advanced or metastatic soft-tissue sarcoma has been doxorubicin. This study compared gemcitabine and docetaxel versus doxorubicin as first-line treatment for advanced or metastatic soft-tissue sarcoma.
The GeDDiS trial was a randomised controlled phase 3 trial done in 24 UK hospitals and one Swiss Group for Clinical Cancer Research (SAKK) hospital. Eligible patients had histologically confirmed locally advanced or metastatic soft-tissue sarcoma of Trojani grade 2 or 3, disease progression before enrolment, and no previous chemotherapy for sarcoma or previous doxorubicin for any cancer. Patients were randomly assigned 1:1 to receive six cycles of intravenous doxorubicin 75 mg/m2 on day 1 every 3 weeks, or intravenous gemcitabine 675 mg/m2 on days 1 and 8 and intravenous docetaxel 75 mg/m2 on day 8 every 3 weeks. Treatment was assigned using a minimisation algorithm incorporating a random element. Randomisation was stratified by age (≤18 years vs >18 years) and histological subtype. The primary endpoint was the proportion of patients alive and progression free at 24 weeks in the intention-to-treat population. Adherence to treatment and toxicity were analysed in the safety population, consisting of all patients who received at least one dose of their randomised treatment. The trial was registered with the European Clinical Trials (EudraCT) database (no 2009–014907–29) and with the International Standard Randomised Controlled Trial registry (ISRCTN07742377), and is now closed to patient entry.
Between Dec 3, 2010, and Jan 20, 2014, 257 patients were enrolled and randomly assigned to the two treatment groups (129 to doxorubicin and 128 to gemcitabine and docetaxel). Median follow-up was 22 months (IQR 15·7–29·3). The proportion of patients alive and progression free at 24 weeks did not differ between those who received doxorubicin versus those who received gemcitabine and docetaxel (46·3% [95% CI 37·5–54·6] vs 46·4% [37·5–54·8]); median progression-free survival (23·3 weeks [95% CI 19·6–30·4] vs 23·7 weeks [18·1–20·0]; hazard ratio [HR] for progression-free survival 1·28, 95% CI 0·99–1·65, p=0·06). The most common grade 3 and 4 adverse events were neutropenia (32 [25%] of 128 patients who received doxorubicin and 25 [20%] of 126 patients who received gemcitabine and docetaxel), febrile neutropenia (26 [20%] and 15 [12%]), fatigue (eight [6%] and 17 [14%]), oral mucositis (18 [14%] and two [2%]), and pain (ten [8%] and 13 [10%]). The three most common serious adverse events, representing 111 (39%) of all 285 serious adverse events recorded, were febrile neutropenia (27 [17%] of 155 serious adverse events in patients who received doxorubicin and 15 [12%] of 130 serious adverse events in patients who received gemcitabine and docetaxel, fever (18 [12%] and 19 [15%]), and neutropenia (22 [14%] and ten [8%]). 154 (60%) of 257 patients died in the intention-to-treat population: 74 (57%) of 129 patients in the doxorubicin group and 80 (63%) of 128 in the gemcitabine and docetaxel group. No deaths were related to the treatment, but two deaths were due to a combination of disease progression and treatment.
Doxorubicin should remain the standard first-line treatment for most patients with advanced soft-tissue sarcoma. These results provide evidence for clinicians to consider with their patients when selecting first-line treatment for locally advanced or metastatic soft-tissue sarcoma.
Cancer Research UK, Sarcoma UK, and Clinical Trial Unit Kantonsspital St Gallen.
Journal Article
ERBB4 confers metastatic capacity in Ewing sarcoma
by
Flanagan, Adrienne M.
,
Triche, Timothy J.
,
Tavares Guerreiro Fregnani, Jose H.
in
Bone and Bones - metabolism
,
Bone and Bones - pathology
,
Bone Neoplasms - genetics
2013
Metastatic spread is the single‐most powerful predictor of poor outcome in Ewing sarcoma (ES). Therefore targeting pathways that drive metastasis has tremendous potential to reduce the burden of disease in ES. We previously showed that activation of the ERBB4 tyrosine kinase suppresses
anoikis
, or detachment‐induced cell death, and induces chemoresistance in ES cell lines
in vitro
. We now show that ERBB4 is transcriptionally overexpressed in ES cell lines derived from chemoresistant or metastatic ES tumours. ERBB4 activates the PI3K‐Akt cascade and focal adhesion kinase (FAK), and both pathways contribute to ERBB4‐mediated activation of the Rac1 GTPase
in vitro
and
in vivo
. ERBB4 augments tumour invasion and metastasis
in vivo
, and these effects are blocked by
ERBB4
knockdown. ERBB4 expression correlates significantly with reduced disease‐free survival, and increased expression is observed in metastatic compared to primary patient‐matched ES biopsies. Our findings identify a novel ERBB4‐PI3K‐Akt‐FAK‐Rac1 pathway associated with aggressive disease in ES. These results predict that therapeutic targeting of ERBB4, alone or in combination with cytotoxic agents, may suppress the metastatic phenotype in ES.
Graphical Abstract
The Authors show that ERBB4 is a biological driver of metastasis in the pediatric bone tumour Ewing sarcoma and identify a novel ERBB4‐PI3K‐Akt‐FAK‐Rac1 pathway associated with aggressive disease.
Journal Article
Afamitresgene autoleucel for advanced synovial sarcoma and myxoid round cell liposarcoma (SPEARHEAD-1): an international, open-label, phase 2 trial
2024
Afamitresgene autoleucel (afami-cel) showed acceptable safety and promising efficacy in a phase 1 trial (NCT03132922). The aim of this study was to further evaluate the efficacy of afami-cel for the treatment of patients with HLA-A*02 and MAGE-A4-expressing advanced synovial sarcoma or myxoid round cell liposarcoma.
SPEARHEAD-1 was an open-label, non-randomised, phase 2 trial done across 23 sites in Canada, the USA, and Europe. The trial included three cohorts, of which the main investigational cohort (cohort 1) is reported here. Cohort 1 included patients with HLA-A*02, aged 16–75 years, with metastatic or unresectable synovial sarcoma or myxoid round cell liposarcoma (confirmed by cytogenetics) expressing MAGE-A4, and who had received at least one previous line of anthracycline-containing or ifosfamide-containing chemotherapy. Patients received a single intravenous dose of afami-cel (transduced dose range 1·0 × 109–10·0 × 109 T cells) after lymphodepletion. The primary endpoint was overall response rate in cohort 1, assessed by a masked independent review committee using Response Evaluation Criteria in Solid Tumours (version 1.1) in the modified intention-to-treat population (all patients who received afami-cel). Adverse events, including those of special interest (cytokine release syndrome, prolonged cytopenia, and neurotoxicity), were monitored and are reported for the modified intention-to-treat population. This trial is registered at ClinicalTrials.gov, NCT04044768; recruitment is closed and follow-up is ongoing for cohorts 1 and 2, and recruitment is open for cohort 3.
Between Dec 17, 2019, and July 27, 2021, 52 patients with cytogenetically confirmed synovial sarcoma (n=44) and myxoid round cell liposarcoma (n=8) were enrolled and received afami-cel in cohort 1. Patients were heavily pre-treated (median three [IQR two to four] previous lines of systemic therapy). Median follow-up time was 32·6 months (IQR 29·4–36·1). Overall response rate was 37% (19 of 52; 95% CI 24–51) overall, 39% (17 of 44; 24–55) for patients with synovial sarcoma, and 25% (two of eight; 3–65) for patients with myxoid round cell liposarcoma. Cytokine release syndrome occurred in 37 (71%) of 52 of patients (one grade 3 event). Cytopenias were the most common grade 3 or worse adverse events (lymphopenia in 50 [96%], neutropenia 44 [85%], leukopenia 42 [81%] of 52 patients). No treatment-related deaths occurred.
Afami-cel treatment resulted in durable responses in heavily pre-treated patients with HLA-A*02 and MAGE-A4-expressing synovial sarcoma. This study shows that T-cell receptor therapy can be used to effectively target solid tumours and provides rationale to expand this approach to other solid malignancies.
Adaptimmune.
Journal Article
Sarcoma and the 100,000 Genomes Project: our experience and changes to practice
2020
The largest whole genome sequencing (WGS) endeavour involving cancer and rare diseases was initiated in the UK in 2015 and ran for 5 years. Despite its rarity, sarcoma ranked third overall among the number of patients' samples sent for sequencing. Herein, we recount the lessons learned by a specialist sarcoma centre that recruited close to 1000 patients to the project, so that we and others may learn from our experience. WGS data was generated from 597 patients, but samples from the remaining approximately 400 patients were not sequenced. This was largely accounted for by unsuitability due to extensive necrosis, secondary to neoadjuvant radiotherapy or chemotherapy, or being placed in formalin. The number of informative genomes produced was reduced further by a PCR amplification step. We showed that this loss of genomic data could be mitigated by sequencing whole genomes from needle core biopsies. Storage of resection specimens at 4 °C for up to 96 h overcame the challenge of freezing tissue out of hours including weekends. Removing access to formalin increased compliance to these storage arrangements. With over 70 different sarcoma subtypes described, WGS was a useful tool for refining diagnoses and identifying novel alterations. Genomes from 350 of the cohort of 597 patients were analysed in this study. Overall, diagnoses were modified for 3% of patients following review of the WGS findings. Continued refinement of the variant‐calling bioinformatic pipelines is required as not all alterations were identified when validated against histology and standard of care diagnostic tests. Further research is necessary to evaluate the impact of germline mutations in patients with sarcoma, and sarcomas with evidence of hypermutation. Despite 50% of the WGS exhibiting domain 1 alterations, the number of patients with sarcoma who were eligible for clinical trials remains small, highlighting the need to revaluate clinical trial design.
Journal Article
Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial
2016
We designed the EURAMOS-1 trial to investigate whether intensified postoperative chemotherapy for patients whose tumour showed a poor response to preoperative chemotherapy (≥10% viable tumour) improved event-free survival in patients with high-grade osteosarcoma.
EURAMOS-1 was an open-label, international, phase 3 randomised, controlled trial. Consenting patients with newly diagnosed, resectable, high-grade osteosarcoma aged 40 years or younger were eligible for randomisation. Patients were randomly assigned (1:1) to receive either postoperative cisplatin, doxorubicin, and methotrexate (MAP) or MAP plus ifosfamide and etoposide (MAPIE) using concealed permuted blocks with three stratification factors: trial group; location of tumour (proximal femur or proximal humerus vs other limb vs axial skeleton); and presence of metastases (no vs yes or possible). The MAP regimen consisted of cisplatin 120 mg/m2, doxorubicin 37·5 mg/m2 per day on days 1 and 2 (on weeks 1 and 6) followed 3 weeks later by high-dose methotrexate 12 g/m2 over 4 h. The MAPIE regimen consisted of MAP as a base regimen, with the addition of high-dose ifosfamide (14 g/m2) at 2·8 g/m2 per day with equidose mesna uroprotection, followed by etoposide 100 mg/m2 per day over 1 h on days 1–5. The primary outcome measure was event-free survival measured in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NCT00134030.
Between April 14, 2005, and June 30, 2011, 2260 patients were registered from 325 sites in 17 countries. 618 patients with poor response were randomly assigned; 310 to receive MAP and 308 to receive MAPIE. Median follow-up was 62·1 months (IQR 46·6–76·6); 62·3 months (IQR 46·9–77·1) for the MAP group and 61·1 months (IQR 46·5–75·3) for the MAPIE group. 307 event-free survival events were reported (153 in the MAP group vs 154 in the MAPIE group). 193 deaths were reported (101 in the MAP group vs 92 in the MAPIE group). Event-free survival did not differ between treatment groups (hazard ratio [HR] 0·98 [95% CI 0·78–1·23]); hazards were non-proportional (p=0·0003). The most common grade 3–4 adverse events were neutropenia (268 [89%] patients in MAP vs 268 [90%] in MAPIE), thrombocytopenia (231 [78% in MAP vs 248 [83%] in MAPIE), and febrile neutropenia without documented infection (149 [50%] in MAP vs 217 [73%] in MAPIE). MAPIE was associated with more frequent grade 4 non-haematological toxicity than MAP (35 [12%] of 301 in the MAP group vs 71 [24%] of 298 in the MAPIE group). Two patients died during postoperative therapy, one from infection (although their absolute neutrophil count was normal), which was definitely related to their MAP treatment (specifically doxorubicin and cisplatin), and one from left ventricular systolic dysfunction, which was probably related to MAPIE treatment (specifically doxorubicin). One suspected unexpected serious adverse reaction was reported in the MAP group: bone marrow infarction due to methotrexate.
EURAMOS-1 results do not support the addition of ifosfamide and etoposide to postoperative chemotherapy in patients with poorly responding osteosarcoma because its administration was associated with increased toxicity without improving event-free survival. The results define standard of care for this population. New strategies are required to improve outcomes in this setting.
UK Medical Research Council, National Cancer Institute, European Science Foundation, St Anna Kinderkrebsforschung, Fonds National de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek-Vlaanderen, Parents Organization, Danish Medical Research Council, Academy of Finland, Deutsche Forschungsgemeinschaft, Deutsche Krebshilfe, Federal Ministry of Education and Research, Semmelweis Foundation, ZonMw (Council for Medical Research), Research Council of Norway, Scandinavian Sarcoma Group, Swiss Paediatric Oncology Group, Cancer Research UK, National Institute for Health Research, University College London Hospitals, and Biomedical Research Centre.
Journal Article