Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
21
result(s) for
"Strock, Christopher"
Sort by:
Root anatomy and soil resource capture
by
Sidhu, Jagdeep Singh
,
Strock, Christopher F.
,
Ajmera, Ishan
in
Agriculture
,
Analysis
,
Anatomy
2021
Background
Suboptimal water and nutrient availability are primary constraints in global agriculture. Root anatomy plays key roles in soil resource acquisition. In this article we summarize evidence that root anatomical phenotypes present opportunities for crop breeding.
Scope
Root anatomical phenotypes influence soil resource acquisition by regulating the metabolic cost of soil exploration, exploitation of the rhizosphere, the penetration of hard soil domains, the axial and radial transport of water, and interactions with soil biota including mycorrhizal fungi, pathogens, insects, and the rhizosphere microbiome. For each of these topics we provide examples of anatomical phenotypes which merit attention as selection targets for crop improvement. Several cross-cutting issues are addressed including the importance of phenotypic plasticity, integrated phenotypes, C sequestration, in silico modeling, and novel methods to phenotype root anatomy including image analysis tools.
Conclusions
An array of anatomical phenes have substantial importance for the acquisition of water and nutrients. Substantial phenotypic variation exists in crop germplasm. New tools and methods are making it easier to phenotype root anatomy, determine its genetic control, and understand its utility for plant fitness. Root anatomical phenotypes are underutilized yet attractive breeding targets for the development of the efficient, resilient crops urgently needed in global agriculture.
Journal Article
Reduction in Root Secondary Growth as a Strategy for Phosphorus Acquisition
by
Strock, Christopher F.
,
Lynch, Jonathan P.
,
de la Riva, Laurie Morrow
in
Biomass
,
Cell Respiration
,
Computer Simulation
2018
We tested the hypothesis that reduced root secondary growth of dicotyledonous species improves phosphorus acquisition. Functional-structural modeling in SimRoot indicates that, in common bean (Phaseolus vulgaris), reduced root secondary growth reduces root metabolic costs, increases root length, improves phosphorus capture, and increases shoot biomass in low-phosphorus soil. Observations from the field and greenhouse confirm that, under phosphorus stress, resource allocation is shifted from secondary to primary root growth, genetic variation exists for this response, and reduced secondary growth improves phosphorus capture from low-phosphorus soil. Under low phosphorus in greenhouse mesocosms, genotypes with reduced secondary growth had 39% smaller root cross-sectional area, 60% less root respiration, 27% greater root length, 78% greater shoot phosphorus content, and 68% greater shoot mass than genotypes with advanced secondary growth. In the field under low phosphorus, these genotypes had 43% smaller root cross-sectional area, 32% greater root length, 58% greater shoot phosphorus content, and 80% greater shoot mass than genotypes with advanced secondary growth. Secondary growth eliminated arbuscular mycorrhizal associations as cortical tissue was destroyed. These results support the hypothesis that reduced root secondary growth is an adaptive response to low phosphorus availability and merits investigation as a potential breeding target.
Journal Article
Multiseriate cortical sclerenchyma enhance root penetration in compacted soils
by
Sidhu, Jagdeep Singh
,
Strock, Christopher F.
,
Mooney, Sacha J.
in
Agricultural Sciences
,
barley
,
Biological Sciences
2021
Mechanical impedance limits soil exploration and resource capture by plant roots. We examine the role of root anatomy in regulating plant adaptation to mechanical impedance and identify a root anatomical phene in maize (Zea mays) and wheat (Triticum aestivum) associated with penetration of hard soil: Multiseriate cortical sclerenchyma (MCS). We characterize this trait and evaluate the utility of MCS for root penetration in compacted soils. Roots with MCS had a greater cell wall-to-lumen ratio and a distinct UV emission spectrum in outer cortical cells. Genome-wide association mapping revealed that MCS is heritable and genetically controlled. We identified a candidate gene associated with MCS. Across all root classes and nodal positions, maize genotypes with MCS had 13% greater root lignin concentration compared to genotypes without MCS. Genotypes without MCS formed MCS upon exogenous ethylene exposure. Genotypes with MCS had greater lignin concentration and bending strength at the root tip. In controlled environments, MCS in maize and wheat was associated improved root tensile strength and increased penetration ability in compacted soils. Maize genotypes with MCS had root systems with 22% greater depth and 49% greater shoot biomass in compacted soils in the field compared to lines without MCS. Of the lines we assessed, MCS was present in 30 to 50% of modern maize, wheat, and barley cultivars but was absent in teosinte and wild and landrace accessions of wheat and barley. MCS merits investigation as a trait for improving plant performance in maize, wheat, and other grasses under edaphic stress.
Journal Article
Laser ablation tomography for visualization of root colonization by edaphic organisms
by
Van Gansbeke, Bart
,
Strock, Christopher F.
,
Guo, Xiangrong
in
barley
,
beans
,
cereal cyst nematode
2019
Soil biota have important effects on crop productivity, but can be difficult to study in situ. Laser ablation tomography (LAT) is a novel method that allows for rapid, three-dimensional quantitative and qualitative analysis of root anatomy, providing new opportunities to investigate interactions between roots and edaphic organisms. LAT was used for analysis of maize roots colonized by arbuscular mycorrhizal fungi, maize roots herbivorized by western corn rootworm, barley roots parasitized by cereal cyst nematode, and common bean roots damaged by Fusarium. UV excitation of root tissues affected by edaphic organisms resulted in differential autofluorescence emission, facilitating the classification of tissues and anatomical features. Samples were spatially resolved in three dimensions, enabling quantification of the volume and distribution of fungal colonization, western corn rootworm damage, nematode feeding sites, tissue compromised by Fusarium, and as well as root anatomical phenotypes. Owing to its capability for highthroughput sample imaging, LAT serves as an excellent tool to conduct large, quantitative screens to characterize genetic control of root anatomy and interactions with edaphic organisms. Additionally, this technology improves interpretation of root–organism interactions in relatively large, opaque root segments, providing opportunities for novel research investigating the effects of root anatomical phenes on associations with edaphic organisms.
Journal Article
Genetic analysis of cassava brown streak disease root necrosis using image analysis and genome-wide association studies
by
Jannink, Jean-Luc
,
Nandudu, Leah
,
Strock, Christopher
in
Cassava
,
cassava brown streak disease (CBSD)
,
Chromosome 1
2024
Cassava brown streak disease (CBSD) poses a substantial threat to food security. To address this challenge, we used PlantCV to extract CBSD root necrosis image traits from 320 clones, with an aim of identifying genomic regions through genome-wide association studies (GWAS) and candidate genes. Results revealed strong correlations among certain root necrosis image traits, such as necrotic area fraction and necrotic width fraction, as well as between the convex hull area of root necrosis and the percentage of necrosis. Low correlations were observed between CBSD scores obtained from the 1-5 scoring method and all root necrosis traits. Broad-sense heritability estimates of root necrosis image traits ranged from low to moderate, with the highest estimate of 0.42 observed for the percentage of necrosis, while narrow-sense heritability consistently remained low, ranging from 0.03 to 0.22. Leveraging data from 30,750 SNPs obtained through DArT genotyping, eight SNPs on chromosomes 1, 7, and 11 were identified and associated with both the ellipse eccentricity of root necrosis and the percentage of necrosis through GWAS. Candidate gene analysis in the 172.2kb region on the chromosome 1 revealed 24 potential genes with diverse functions, including ubiquitin-protein ligase, DNA-binding transcription factors, and RNA metabolism protein, among others. Despite our initial expectation that image analysis objectivity would yield better heritability estimates and stronger genomic associations than the 1-5 scoring method, the results were unexpectedly lower. Further research is needed to comprehensively understand the genetic basis of these traits and their relevance to cassava breeding and disease management.
Journal Article
BerryPortraits: Phenotyping Of Ripening Traits in cranberry (Vaccinium macrocarpon Ait.) with YOLOv8
by
Sideli, Gina M.
,
Iorizzo, Massimo
,
Lopez-Moreno, Hector
in
Analysis
,
Biological Techniques
,
Biomedical and Life Sciences
2024
BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts morphometric data on fruit quality traits such as berry color, size, shape, and uniformity. Utilizing the YOLOv8 framework and community-developed, actively-maintained Python libraries such as OpenCV, BerryPortraits software was trained on 512 postharvest images (taken under controlled lighting conditions) of phenotypically diverse cranberry populations (
Vaccinium macrocarpon
Ait.) from the two largest public cranberry breeding programs in the U.S. The implementation of CIELAB, an intuitive and perceptually uniform color space, enables differentiation between berry color and berry brightness, which are confounded in classic RGB color channel measurements. Furthermore, computer vision enables precise and quantifiable color phenotyping, thus facilitating inclusion of researchers and data analysts with color vision deficiency. BerryPortraits is a phenotyping tool for researchers in plant breeding, plant genetics, horticulture, food science, plant physiology, plant pathology, and related fields. BerryPortraits has strong potential applications for other specialty crops such as blueberry, lingonberry, caneberry, grape, and more. As an open source phenotyping tool based on widely-used python libraries, BerryPortraits allows anyone to use, fork, modify, optimize, and embed this software into other tools or pipelines.
Journal Article
Three-dimensional imaging reveals that positions of cyst nematode feeding sites relative to xylem vessels differ between susceptible and resistant wheat
2021
Key messageResistance conferred by the Cre8 locus of wheat prevents cereal cyst nematode feeding sites from reaching and invading root metaxylem vessels.Cyst nematodes develop syncytial feeding sites within plant roots. The success of these sites is affected by host plant resistance. In wheat (Triticum aestivum L.), ‘Cre’ loci affect resistance against the cereal cyst nematode (CCN) Heterodera avenae. To investigate how one of these loci (Cre8, on chromosome 6B) confers resistance, CCN-infected root tissue from susceptible (−Cre8) and resistant (+Cre8) wheat plants was examined using confocal microscopy and laser ablation tomography. Confocal analysis of transverse sections showed that feeding sites in the roots of −Cre8 plants were always adjacent to metaxylem vessels, contained many intricate ‘web-like’ cell walls, and sometimes ‘invaded’ metaxylem vessels. In contrast, feeding sites in the roots of +Cre8 plants were usually not directly adjacent to metaxylem vessels, had few inner cell walls and did not ‘invade’ metaxylem vessels. Models based on data from laser ablation tomography confirmed these observations. Confocal analysis of longitudinal sections revealed that CCN-induced xylem modification that had previously been reported for susceptible (−Cre8) wheat plants is less extreme in resistant (+Cre8) plants. Application of a lignin-specific stain revealed that secondary thickening around xylem vessels in CCN-infected roots was greater in +Cre8 plants than in −Cre8 plants. Collectively, these results indicate that Cre8 resistance in wheat acts by preventing cyst nematode feeding sites from reaching and invading root metaxylem vessels.
Journal Article
Developmental Morphology and Anatomy Shed Light on Both Parallel and Convergent Evolution of the Umbellate Inflorescence in Monocots, Underlain by a New Variant of Metatopy
by
Rose, Irving Jason
,
Specht, Chelsea D.
,
Stevenson, Dennis Wm
in
Amaryllidaceae
,
Anatomy
,
Asparagaceae
2022
Inflorescence structure is very diverse and homoplasious, yet the developmental basis of their homoplasy is poorly understood. To gain an understanding of the degree of homology that these diverse structures share, we characterize the developmental morphology and anatomy of various umbellate inflorescences across the monocots and analyzed them in an evolutionary context. To characterize branching order, we characterized the developmental morphology of multiple inflorescences with epi-illumination, and vascular anatomy with Laser Ablation Tomography, a novel high-throughput method to reconstruct three-dimensional vasculature. We used these approaches to analyze the umbellate inflorescences in five instances of presumed homoplasy: in three members of the Amaryllidaceae; in three members of the Asparagaceae, including a putatively derived raceme in Dichelostemma congestum ; in Butomus umbellatus (Alismataceae), in Tacca chantrieri (Dioscoreaceae), and in umbellate structure in Fritillaria imperialis (Liliaceae). We compare these with racemes found in three members of the subfamily Scilliioideae (Asparagaceae). We find there are three convergent developmental programs that generate umbellate inflorescences in the monocots, bostryx-derived, cincinnus-derived and raceme-derived. Additionally, among the bostryx-derived umbellate inflorescence, there are three instances of parallel evolution found in the Amaryllidaceae, in two members of Brodiaeoideae (Asparagaceae), and Butomus umbellatus , all of which share the same generative developmental program. We discuss the morphological modifications necessary to generate such complex and condensed structures and use these insights to describe a new variant of metatopy, termed horizontal concaulesence. We contextualize our findings within the broader literature of monocot inflorescence development, with a focus on synthesizing descriptive developmental morphological studies.
Journal Article