Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
78 result(s) for "Stuart, Dustin"
Sort by:
Single-atom trapping and transport in DMD-controlled optical tweezers
We demonstrate the trapping and manipulation of single neutral atoms in reconfigurable arrays of optical tweezers. Our approach offers unparalleled speed by using a Texas instruments digital micro-mirror device as a holographic amplitude modulator with a frame rate of 20 000 per second. We show the trapping of static arrays of up to 20 atoms, as well as transport of individually selected atoms over a distance of 25 m with laser cooling and 4 m without. We discuss the limitations of the technique and the scope for technical improvements.
Nonlinear Zeeman effects in the cavity-enhanced emission of polarised photons
We theoretically and experimentally investigate nonlinear Zeeman (NLZ) effects within a polarised single-photon source that uses a single 87Rb atom strongly coupled to a high finesse optical cavity. The breakdown of the atomic hyperfine structure in the D 2 transition manifold for intermediate strength magnetic fields is shown to result in asymmetric and, ultimately, inhibited operation of the polarised atom-photon interface. The coherence of the system is considered using Hong-Ou-Mandel interference of the emitted photons. This informs the next steps to be taken and the modelling of future implementations, based on feasible cavity designs operated in regimes minimising NLZ effects, is presented and shown to provide improved performance.
Manipulating single atoms with optical tweezers
Single atoms are promising candidates for physically implementing quantum bits, the fundamental unit of quantum information. We have built an apparatus for cooling, trapping and imaging single rubidium atoms in microscopic optical tweezers. The traps are formed from a tightly focused off-resonant laser beam, which traps atoms using the optical dipole force. The traps have a diameter of ~1 μm and a depth of ~1 mK. The novelty of our approach is the use a digital mirror device (DMD) to generate multiple independently movable tweezers from a single laser beam. The DMD consists of an array of micro-mirrors that can be switched on and off, thus acting as a binary amplitude modulator. We use the DMD to imprint a computer-generated hologram on the laser beam, which is converted in to the desired arrangement of traps in the focal plane of a lens. We have developed fast algorithms for calculating binary holograms suitable for the DMD. In addition, we use this method to measure and correct for errors in the phase of the wavefront caused by optical aberrations, which is necessary for producing diffraction-limited focal spots. Using this apparatus, we have trapped arrays of up to 20 atoms with arbitrary geometrical arrangements. We exploit light-assisted collisions between atoms to ensure there is at most one atom per trapping site. We measure the temperature of the atoms in the traps to be 12 μK, and their lifetime to be 1.4 s. Finally, we demonstrate the ability to select individual atoms from an array and transport them over a distance of 14μm with laser cooling, and 5 μm without.
Manipulating single atoms with optical tweezers
Single atoms are promising candidates for physically implementing quantum bits, the fundamental unit of quantum information. We have built an apparatus for cooling, trapping and imaging single rubidium atoms in microscopic optical tweezers. The traps are formed from a tightly focused off-resonant laser beam, which traps atoms using the optical dipole force. The traps have a diameter of ~1 μm and a depth of ~1 mK. The novelty of our approach is the use a digital mirror device (DMD) to generate multiple independently movable tweezers from a single laser beam. The DMD consists of an array of micro-mirrors that can be switched on and off, thus acting as a binary amplitude modulator. We use the DMD to imprint a computer-generated hologram on the laser beam, which is converted in to the desired arrangement of traps in the focal plane of a lens. We have developed fast algorithms for calculating binary holograms suitable for the DMD. In addition, we use this method to measure and correct for errors in the phase of the wavefront caused by optical aberrations, which is necessary for producing diffraction-limited focal spots. Using this apparatus, we have trapped arrays of up to 20 atoms with arbitrary geometrical arrangements. We exploit light-assisted collisions between atoms to ensure there is at most one atom per trapping site. We measure the temperature of the atoms in the traps to be 12 μK, and their lifetime to be 1.4 s. Finally, we demonstrate the ability to select individual atoms from an array and transport them over a distance of 14μm with laser cooling, and 5 μm without.
Single-atom trapping and transport in DMD-controlled optical tweezers
We demonstrate the trapping and manipulation of single neutral atoms in reconfigurable arrays of optical tweezers. Our approach offers unparalleled speed by using a Texas Instruments Digital Micro-mirror Device (DMD) as a holographic amplitude modulator with a frame rate of 20,000 per second. We show the trapping of static arrays of up to 20 atoms, as well as transport of individually selected atoms over a distance of 25{\\mu}m with laser cooling and 4{\\mu}m without. We discuss the limitations of the technique and the scope for technical improvements.
Nonlinear Zeeman Effects in the Cavity-Enhanced Emission of Polarised Photons
We theoretically and experimentally investigate nonlinear Zeeman effects within a polarised single-photon source that uses a single 87Rb atom strongly coupled to a high finesse optical cavity. The breakdown of the atomic hyperfine structure in the D2 transition manifold for intermediate strength magnetic fields is shown to result in asymmetric and, ultimately, inhibited operation of the polarised atom-photon interface. The coherence of the system is considered using Hong-Ou-Mandel interference of the emitted photons. This informs the next steps to be taken and the modelling of future implementations, based on feasible cavity designs operated in regimes minimising nonlinear Zeeman effects, is presented and shown to provide improved performance.
Polarisation oscillations in birefringent emitter-cavity systems
We present the effects of resonator birefringence on the cavity-enhanced interfacing of quantum states of light and matter, including the first observation of single photons with a time-dependent polarisation state that evolves within their coherence time. A theoretical model is introduced and experimentally verified by the modified polarisation of temporally-long single photons emitted from a \\(^{87}\\)Rb atom coupled to a high-finesse optical cavity by a vacuum-stimulated Raman adiabatic passage (V-STIRAP) process. Further theoretical investigation shows how a change in cavity birefringence can both impact the atom-cavity coupling and engender starkly different polarisation behaviour in the emitted photons. With polarisation a key resource for encoding quantum states of light and modern micron-scale cavities particularly prone to birefringence, the consideration of these effects is vital to the faithful realisation of efficient and coherent emitter-photon interfaces for distributed quantum networking and communications.
How to administer an antidote to Schrödinger's cat
In his 1935 Gedankenexperiment, Erwin Schr\"{o}dinger imagined a poisonous substance which has a 50% probability of being released, based on the decay of a radioactive atom. As such, the life of the cat and the state of the poison become entangled, and the fate of the cat is determined upon opening the box. We present an experimental technique that keeps the cat alive on any account. This method relies on the time-resolved Hong-Ou-Mandel effect: two long, identical photons impinging on a beam splitter always bunch in either of the outputs. Interpreting the first photon detection as the state of the poison, the second photon is identified as the state of the cat. Even after the collapse of the first photon's state, we show their fates are intertwined through quantum interference. We demonstrate this by a sudden phase change between the inputs, administered conditionally on the outcome of the first detection, which steers the second photon to a pre-defined output and ensures that the cat is always observed alive.
Efficient and fast algorithms to generate holograms for optical tweezers
We discuss and compare three algorithms for generating holograms: simple rounding, Floyd-Steinberg error diffusion dithering, and mixed region amplitude freedom (MRAF). The methods are optimised for producing large arrays of tightly focused optical tweezers for trapping particles. The algorithms are compared in terms of their speed, efficiency, and accuracy, for periodic arrangements of traps; an arrangement of particular interest in the field of quantum computing. We simulate the image formation using each of a binary amplitude modulating digital mirror device (DMD) and a phase modulating spatial light modulator (PSLM) as the display element. While a DMD allows for fast frame rates, the slower PSLM is more efficient and provides higher accuracy with a quasi-continuous variation of phase. We discuss the relative merits of each algorithm for use with both a DMD and a PSLM, allowing one to choose the ideal approach depending on the circumstances.
Fast algorithms for generating binary holograms
We describe three algorithms for generating binary-valued holograms. Our methods are optimised for producing large arrays of tightly focussed optical tweezers for trapping particles. Binary-valued holograms allow us to use a digital mirror device (DMD) as the display element, which is much faster than other alternatives. We describe how our binary amplitude holograms can be used to correct for phase errors caused by optical aberrations. Furthermore, we compare the speed and accuracy of the algorithms for both periodic and arbitrary arrangements of traps, which allows one to choose the ideal scheme depending on the circumstances.