Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
43 result(s) for "Stubbington, Rachel"
Sort by:
Fine sediment reduces vertical migrations of Gammarus pulex (Crustacea: Amphipoda) in response to surface water loss
Surface and subsurface sediments in river ecosystems are recognized as refuges that may promote invertebrate survival during disturbances such as floods and streambed drying. Refuge use is spatiotemporally variable, with environmental factors including substrate composition, in particular the proportion of fine sediment (FS), affecting the ability of organisms to move through interstitial spaces. We conducted a laboratory experiment to examine the effects of FS on the movement of Gammarus pulex Linnaeus (Crustacea: Amphipoda) into subsurface sediments in response to surface water loss. We hypothesized that increasing volumes of FS would impede and ultimately prevent individuals from migrating into the sediments. To test this hypothesis, the proportion of FS (1–2 mm diameter) present within an open gravel matrix (4–16 mm diameter) was varied from 10 to 20% by volume in 2.5% increments. Under control conditions (0% FS), 93% of individuals moved into subsurface sediments as the water level was reduced. The proportion of individuals moving into the subsurface decreased to 74% at 10% FS, and at 20% FS no individuals entered the sediments, supporting our hypothesis. These results demonstrate the importance of reducing FS inputs into river ecosystems and restoring FS-clogged riverbeds, to promote refuge use during increasingly common instream disturbances.
DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates
Dispersal is an essential process in population and community dynamics, but is difficult to measure in the field. In freshwater ecosystems, information on biological traits related to organisms’ morphology, life history and behaviour provides useful dispersal proxies, but information remains scattered or unpublished for many taxa. We compiled information on multiple dispersal-related biological traits of European aquatic macroinvertebrates in a unique resource, the DISPERSE database. DISPERSE includes nine dispersal-related traits subdivided into 39 trait categories for 480 taxa, including Annelida, Mollusca, Platyhelminthes, and Arthropoda such as Crustacea and Insecta, generally at the genus level. Information within DISPERSE can be used to address fundamental research questions in metapopulation ecology, metacommunity ecology, macroecology and evolutionary ecology. Information on dispersal proxies can be applied to improve predictions of ecological responses to global change, and to inform improvements to biomonitoring, conservation and management strategies. The diverse sources used in DISPERSE complement existing trait databases by providing new information on dispersal traits, most of which would not otherwise be accessible to the scientific community.Measurement(s)dispersal • movement quality • morphological feature • behavioral qualityTechnology Type(s)digital curationFactor Type(s)taxonSample Characteristic - OrganismArthropoda • Mollusca • AnnelidaSample Characteristic - Environmentaquatic biome • freshwater biomeSample Characteristic - LocationEuropeMachine-accessible metadata file describing the reported data: 10.6084/m9.figshare.13148333
Alpha and beta diversity of connected benthic–subsurface invertebrate communities respond to drying in dynamic river ecosystems
Drying disturbances are the primary determinant of aquatic community biodiversity in dynamic river ecosystems. Research exploring how communities respond to disturbance has focused on benthic invertebrates in surface sediments, inadequately representing a connected community that extends into the subsurface. We compared subsurface and benthic invertebrate responses to drying, to identify common and context‐dependent spatial patterns. We characterized community composition, alpha diversity and beta diversity across a gradient of drying duration. Subsurface communities responded to drying, but these responses were typically less pronounced than those of benthic communities. Despite compositional changes and in contrast to reductions in benthic alpha diversity, the alpha diversity of subsurface communities remained stable except at long drying durations. Some primarily benthic taxa were among those whose subsurface frequency and abundance responded positively to drying. Collectively, changing composition, stable richness and taxon‐specific increases in occurrence provide evidence that subsurface sediments can support persistence of invertebrate communities during drying disturbances. Beta‐diversity patterns varied and no consistent patterns distinguished the total diversity, turnover or nestedness of subsurface compared to benthic communities. In response to increasing drying duration, beta diversity increased or remained stable for benthic communities, but remained stable or decreased for subsurface communities, likely reflecting contrasts in the influence of mass effects, priority effects and environmental filtering. Dissimilarity between subsurface and benthic communities remained stable or increased with drying duration, suggesting that subsurface communities maintain distinct biodiversity value while also supporting temporary influxes of benthic taxa during drying events. As temporary rivers increase in extent due to global change, we highlight that recognizing the connected communities that extend into the subsurface sediments can enable holistic understanding of ecological responses to drying, the key determinant of biodiversity in these dynamic ecosystems.
Changes in invertebrate assemblage composition in benthic and hyporheic zones during a severe supraseasonal drought
Droughts are unpredictable disturbances characterized in streams by declining flow, reduced habitat availability, and deteriorating abiotic conditions. Such events typically reduce benthic invertebrate taxon richness and modify assemblage composition, but little is known about how hyporheic invertebrate assemblages respond to drought or how these responses relate to changes in benthic assemblages. We hypothesized that taxon richness (α diversity) and variability (as within-site β diversity) in benthic assemblage composition would decline as drought proceeded, whereas concurrent changes in hyporheic assemblages would be lower in this more stable environment. We predicted that benthic assemblage composition between sites would converge as epigean taxa were selectively eliminated, whereas between-site hyporheic β diversity would change little. We sampled benthic and hyporheic invertebrates concurrently from 4 sites along a groundwater-fed stream during the final stages of a severe supraseasonal drought punctuated by a record heat wave. Abiotic conditions in benthic habitats deteriorated as flow declined, but changes were less pronounced in the hyporheic zone. Benthic α diversity declined during drought, whereas hyporheic α diversity changed little. However, benthic within-site β diversity increased as the drought progressed because of localized variation in the abundance of common taxa. Temporal trends in hyporheic β diversity were less consistent. Benthic assemblages at individual sites became more similar, especially during the heat wave, reflecting low α diversity and abundance. Hyporheic assemblages changed markedly because of temporary increases in abundances of epigean and hypogean amphipods. These contrasting responses of benthic and hyporheic assemblages to drought should be recognized when developing management strategies for drought-impacted streams.
Current protected areas provide limited benefits for European river biodiversity
Protected areas are a principal conservation tool for addressing biodiversity loss. Such protection is especially needed in freshwaters, given their greater biodiversity losses compared to terrestrial and marine ecosystems. However, broad-scale evaluations of protected area effectiveness for freshwater biodiversity are lacking. Here, we provide a continental-scale analysis of the relationship between protected areas and freshwater biodiversity using 1,754 river invertebrate community time series sampled between 1986 and 2022 across ten European countries. Protected areas primarily benefited poor-quality communities (indicative of higher human impacts) that were protected, or that gained protection, across a substantial proportion of their upstream catchment. Protection had little to no influence on moderate- and high-quality communities, although high-quality communities potentially provide less scope for effect. Our results reveal the overall limited effectiveness of current protected areas for freshwater biodiversity, likely because they are typically designed and managed to achieve terrestrial conservation goals. Broadly improving effectiveness for freshwater biodiversity requires catchment-scale management approaches involving larger and more continuous upstream protection, and efforts to address remaining stressors. These approaches would also benefit connected terrestrial and coastal ecosystems, thus generally helping bend the curve of global biodiversity loss. The effects of current protected areas on freshwater biodiversity are poorly understood. Here, the authors show that European protected areas have overall limited influence on changes in river biodiversity, underscoring the urgent need for improved effectiveness.
Climatic aridity increases temporal nestedness of invertebrate communities in naturally drying rivers
Climate change is altering the water cycle globally, increasing the frequency and magnitude of floods and droughts. An outstanding question is whether biodiversity responses to hydrological disturbance depend on background climatic context-and if so, which contexts increase vulnerability to disturbance. Answering this question requires comparison of organismal responses across environmental gradients. However, opportunities to track disturbed communities against an undisturbed baseline remain rare. Here we gathered a global dataset capturing responses of aquatic invertebrate communities to river drying, which includes 112 sites spanning a gradient of climatic aridity. We measured the effects of river drying on taxonomic richness and temporal β-diversity (turnover and nestedness components). We also measured the relative abundance of aquatic invertebrates with strategies that confer resilience (or resistance) to drying. Contrary to our expectations, we found that taxonomic richness recovered from drying similarly across the aridity gradient. The turnover component of β-diversity (i.e. species replacements over time) largely accounted for differences in community composition before versus after drying. However, increasing aridity was associated with greater nestedness-driven compositional changes at intermittent sites-that is, after drying communities became subsets of those before drying. These results show that climatic context can explain variation in community responses to the same hydrological disturbance (drying), and suggest that increased aridity will constrain biodiversity responses at regional scales. Further consideration of the climatic context in hydroecological research may help improve predictions of the local impacts of hydrological disturbance by identifying climate regions where communities are more (or less) sensitive to extremes, including river drying events.
Ecosystem services of temporary streams differ between wet and dry phases in regions with contrasting climates and economies
Temporary streams are dynamic ecosystems in which mosaics of flowing, ponded and dry habitats support high biodiversity of both aquatic and terrestrial species. Species interact within habitats to perform or facilitate processes that vary in response to changing habitat availability. A natural capital approach recognizes that, through such processes, the ‘natural assets’ of all ecosystems deliver services that benefit people. The ecosystem services of temporary streams remain largely unexplored, in particular those provided during ponded and dry phases. In addition, recent characterizations have focused on dryland systems, and it remains unclear how service provision varies among different climatic regions, or between developed and developing economies. We use evidence from interdisciplinary literature to examine the ecosystem services delivered by temporary streams, including the regulating, provisioning and cultural services provided across the continuum from flowing to dry conditions. We focus on service provision during dry phases and wet–dry transitions, across regions with contrasting climates and economic development. Provision of individual services in temporary streams may be reduced, enhanced or changed by surface water loss. Services enhanced by dry phases include provision of higher‐quality subsurface drinking water and unique opportunities for recreation. Shifts between dry and wet phases enable groundwater recharge that mitigates water scarcity, and grant dry‐phase access to sediments deposited during flowing phases. However, the accessibility and thus perceived value of these and other services varies considerably among regions. In addition, accessing provisioning services requires careful management to promote sustainable resource use and avoid ecological degradation. We highlight the need for environmental managers to recognize temporary streams as aquatic–terrestrial ecosystems, and to take actions promoting their diversity within functional socio‐ecological systems that deliver unique service bundles characterized by variability and differing availability in space and time. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article
Spatial variability in the hyporheic zone refugium of temporary streams
A key ecological role hypothesized for the hyporheic zone is as a refugium that promotes survival of benthic invertebrates during adverse conditions in the surface stream. Many studies have investigated use of the hyporheic refugium during hydrological extremes (spates and streambed drying), and recent research has linked an increase in the abundance of benthic invertebrates within hyporheic sediments to increasing biotic interactions during flow recession in a temporary stream. This study examined spatial variability in the refugial capacity of the hyporheic zone in two groundwater-dominated streams in which flow permanence varied over small areas. Two non-insect taxa, Gammarus pulex and Polycelis spp. were common to both streams and were investigated in detail. Hydrological conditions in both streams comprised a four-month period of flow recession and low flows, accompanied by reductions in water depth and wetted width. Consequent declines in submerged benthic habitat availability were associated with increases in population densities of mobile benthic taxa, in particular G. pulex . The reduction in the spatial extent of the hyporheic zone was minimal, and this habitat was therefore a potential refugium from increasing biotic interactions in the benthic sediments. Concurrent increases in the hyporheic abundance and hyporheic proportion of a taxon’s total (benthic + hyporheic) population were considered as evidence of active refugium use. Such evidence was species-specific and site-specific, with refugium use being observed only for G. pulex and at sites dominated by downwelling water. A conceptual model of spatial variability in the refugial capacity of the hyporheic zone during habitat contraction is presented, which highlights the potential importance of the direction of hydrologic exchange.
Characterization of Macroinvertebrate Communities in the Hyporheic Zone of River Ecosystems Reflects the Pump-Sampling Technique Used
The hyporheic zone of river ecosystems provides a habitat for a diverse macroinvertebrate community that makes a vital contribution to ecosystem functioning and biodiversity. However, effective methods for sampling this community have proved difficult to establish, due to the inaccessibility of subsurface sediments. The aim of this study was to compare the two most common semi-quantitative macroinvertebrate pump-sampling techniques: Bou-Rouch and vacuum-pump sampling. We used both techniques to collect replicate samples in three contrasting temperate-zone streams, in each of two biogeographical regions (Atlantic region, central England, UK; Continental region, southeast France). Results were typically consistent across streams in both regions: Bou-Rouch samples provided significantly higher estimates of taxa richness, macroinvertebrate abundance, and the abundance of all UK and eight of 10 French common taxa. Seven and nine taxa which were rare in Bou-Rouch samples were absent from vacuum-pump samples in the UK and France, respectively; no taxon was repeatedly sampled exclusively by the vacuum pump. Rarefaction curves (rescaled to the number of incidences) and non-parametric richness estimators indicated no significant difference in richness between techniques, highlighting the capture of more individuals as crucial to Bou-Rouch sampling performance. Compared to assemblages in replicate vacuum-pump samples, multivariate analyses indicated greater distinction among Bou-Rouch assemblages from different streams, as well as significantly greater consistency in assemblage composition among replicate Bou-Rouch samples collected in one stream. We recommend Bou-Rouch sampling for most study types, including rapid biomonitoring surveys and studies requiring acquisition of comprehensive taxon lists that include rare taxa. Despite collecting fewer macroinvertebrates, vacuum-pump sampling remains an important option for inexpensive and rapid sample collection.
Living on the edge: Predicting invertebrate richness and rarity in disturbance‐prone aquatic–terrestrial ecosystems
Temporal fluctuations in cause the spatial extent of wet and dry habitats to vary in aquatic–terrestrial riverine ecosystems, complicating their biomonitoring. As such, biomonitoring efforts may fail to characterize the species that inhabit such habitats, hampering assessments of their biodiversity and implementation of evidence‐informed management strategies. Relationships between the dynamic characteristics of aquatic–terrestrial habitats and their communities are well known. Thus, habitat characteristics may enable estimation of faunal assemblage characteristics such as taxonomic richness, regardless of in‐channel water levels. We investigated whether indicators summarizing habitat survey data can predict two metrics representing terrestrial invertebrate assemblages (e.g. taxa richness) in two aquatic–terrestrial habitats: exposed riverine sediments and dry temporary streams. We also compared the performance of unimetric and multimetric habitat indicators in making predictions. In exposed riverine sediments, >88% of predictions were correlated with observed taxa richness and an index of conservation status. Values predicted by exposed riverine sediment samples were correlated with those observed in temporary stream channels with comparable riparian (i.e. largely agricultural) land use, but not those observed in channels with contrasting (i.e. more urban) land use. Unimetric habitat indicators performed similarly to more complex multimetric indicators, with each explaining ≤6% of the variability in taxa richness and the index of conservation status. The different spatial scales at which invertebrates respond to habitat conditions and at which indicators record habitat conditions, and a more comprehensive training dataset that incorporates a full range of habitat conditions (i.e. land use), may improve future predictions. We demonstrate that invertebrate assemblage characteristics can be predicted regardless of in‐channel water levels. Agreement between exposed riverine sediment predictions and temporary stream observations suggests that these predictions are transferable among a range of aquatic–terrestrial habitat types, and could thus be widely applied to aid conservation of riverine biodiversity in dynamic aquatic–terrestrial ecosystems. Aquatic–terrestrial habitats are widespread, but fluctuating water levels make them difficult to biomonitor. We use habitat metrics to predict terrestrial invertebrate assemblage characteristics, such as richness. These predictions may be used in the absence of direct sampling data (e.g. when terrestrial sampling is not possible due to high water levels) to inform the management and protection of aquatic–terrestrial habitats.