Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
26 result(s) for "Stukowski, Alexander"
Sort by:
Computational Analysis Methods in Atomistic Modeling of Crystals
This article discusses computational analysis methods typically used in atomistic modeling of crystalline materials and highlights recent developments that can provide better insights into processes at the atomic scale. Topics include the classification of local atomic structures, the transition from atomistics to mesoscale and continuum-scale descriptions, and the automated identification of dislocations in atomistic simulation data.
Atomistic insights into metal hardening
For millennia, humans have exploited the natural property of metals to get stronger or harden when mechanically deformed. Ultimately rooted in the motion of dislocations, mechanisms of metal hardening have remained in the cross-hairs of physical metallurgists for over a century. Here, we performed atomistic simulations at the limits of supercomputing that are sufficiently large to be statistically representative of macroscopic crystal plasticity yet fully resolved to examine the origins of metal hardening at its most fundamental level of atomic motion. We demonstrate that the notorious staged (inflection) hardening of metals is a direct consequence of crystal rotation under uniaxial straining. At odds with widely divergent and contradictory views in the literature, we observe that basic mechanisms of dislocation behaviour are the same across all stages of metal hardening. In contrast with conventional views, ultra-large-scale atomistic simulations show that the staged character of strain hardening of metals originates from crystal rotation, whereas the dislocation behaviours remain the same across all the stages.
The origin of jerky dislocation motion in high-entropy alloys
Dislocations in single-phase concentrated random alloys, including high-entropy alloys (HEAs), repeatedly encounter pinning during glide, resulting in jerky dislocation motion. While solute-dislocation interaction is well understood in conventional alloys, the origin of individual pinning points in concentrated random alloys is a matter of debate. In this work, we investigate the origin of dislocation pinning in the CoCrFeMnNi HEA. In-situ transmission electron microscopy studies reveal wavy dislocation lines and a jagged glide motion under external loading, even though no segregation or clustering is found around Shockley partial dislocations. Atomistic simulations reproduce the jerky dislocation motion and link the repeated pinning to local fluctuations in the Peierls friction. We demonstrate that the density of high local Peierls friction is proportional to the critical stress required for dislocation glide and the dislocation mobility. Dislocations in high-entropy alloys encounter pinning during glide resulting in jerky motion. Here the authors demonstrate that the density of high local Peierls force is proportional to the critical stress required for their glide and mobility.
Solid solution hardening in CrMnFeCoNi-based high entropy alloy systems studied by a combinatorial approach
Solid solution hardening in high entropy alloys was studied for the Cantor alloy using diffusion couples and nanoindentation. We study a continuous variation of the alloying content and directly correlate the nanoindentation hardness to the local composition up to the phase boundary. The composition dependent hardness is analysed using the Labusch model and the more recent Varvenne model. The Labusch model has been fitted to experimental data and confirms Cr as the most potent strengthening element. For comparison of the experimental hardness and the predicted yield strength of the Varvenne model, a concentration-dependent strain-hardening factor is introduced to account for strain hardening during indentation, which leads to a very good agreement between experiment and model. A study of the input parameters of the Varvenne model, performed by atomistic computer simulations, shows no significant effect of fluctuations in the atomic size misfit volumes or in the local shear modulus to the computed yield strength. Graphic Abstract
Probing the limits of metal plasticity with molecular dynamics simulations
The limits of dislocation-mediated metal plasticity are studied by using in situ computational microscopy to reduce the enormous amount of data from fully dynamic atomistic simulations into a manageable form. Probing plasticity limits of metals Fully dynamic atomistic simulations of plastic deformation in metals are so computationally demanding that materials physicists have instead developed mesoscale proxies to model dislocation dynamics. In this paper, Vasily Bulatov and colleagues take on the challenge of modelling metal plasticity at the atomic level. Such simulations require models that contain many millions of atoms (the largest simulation in this study contains 268 million atoms), and algorithms are used to process the datasets down to a volume that allows human interpretation. The authors probe ultrahigh-strain-rate deformation in body-centred-cubic tantalum, a model metal, to investigate the limits of metal plasticity. They show that at certain limiting conditions, dislocations can no longer relieve metal loading and twinning takes over. At a strain rate lower than this limit, flow stress and dislocation density achieve a steady state and a sort of metal kneading is observed. The simulations support previous proposals of the maximum dislocation density that can be reached before a metal collapses. Ordinarily, the strength and plasticity properties of a metal are defined by dislocations—line defects in the crystal lattice whose motion results in material slippage along lattice planes 1 . Dislocation dynamics models are usually used as mesoscale proxies for true atomistic dynamics, which are computationally expensive to perform routinely 2 . However, atomistic simulations accurately capture every possible mechanism of material response, resolving every “jiggle and wiggle” 3 of atomic motion, whereas dislocation dynamics models do not. Here we present fully dynamic atomistic simulations of bulk single-crystal plasticity in the body-centred-cubic metal tantalum. Our goal is to quantify the conditions under which the limits of dislocation-mediated plasticity are reached and to understand what happens to the metal beyond any such limit. In our simulations, the metal is compressed at ultrahigh strain rates along its [001] crystal axis under conditions of constant pressure, temperature and strain rate. To address the complexity of crystal plasticity processes on the length scales (85–340 nm) and timescales (1 ns–1μs) that we examine, we use recently developed methods of in situ computational microscopy 4 , 5 to recast the enormous amount of transient trajectory data generated in our simulations into a form that can be analysed by a human. Our simulations predict that, on reaching certain limiting conditions of strain, dislocations alone can no longer relieve mechanical loads; instead, another mechanism, known as deformation twinning (the sudden re-orientation of the crystal lattice 6 ), takes over as the dominant mode of dynamic response. Below this limit, the metal assumes a strain-path-independent steady state of plastic flow in which the flow stress and the dislocation density remain constant as long as the conditions of straining thereafter remain unchanged. In this distinct state, tantalum flows like a viscous fluid while retaining its crystal lattice and remaining a strong and stiff metal.
Structure identification methods for atomistic simulations of crystalline materials
We discuss existing and new computational analysis techniques to classify local atomic arrangements in large-scale atomistic computer simulations of crystalline solids. This article includes a performance comparison of typical analysis algorithms such as Common Neighbor Analysis, Centrosymmetry Analysis, Bond Angle Analysis, Bond Order Analysis, and Voronoi Analysis. In addition we propose a simple extension to the Common Neighbor Analysis method that makes it suitable for multi-phase systems. Finally, we introduce a new structure identification algorithm, the Neighbor Distance Analysis, that is designed to identify atomic structure units in grain boundaries.
The origin of jerky dislocation motion in high-entropy alloys
Dislocations in single-phase concentrated random alloys, including high- entropy alloys (HEAs), repeatedly encounter pinning during glide, resulting in jerky dislocation motion. While solute-dislocation interaction is well understood in conventional alloys, the origin of individual pinning points in concentrated random alloys is a matter of debate. In this work, we investigate the origin of dislocation pinning in the CoCrFeMnNi HEA. In- situ transmission electron microscopy studies reveal wavy dislocation lines and a jagged glide motion under external loading, even though no segregation or clustering is found around Shockley partial dislocations. Atomistic simulations reproduce the jerky dislocation motion and link the repeated pinning to local fluctuations in the Peierls friction. We demonstrate that the density of high local Peierls friction is proportional to the critical stress required for dislocation glide and the dislocation mobility.