Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
47 result(s) for "Stuyver, Lieven J."
Sort by:
The role of diagnostic technologies to measure progress toward WHO 2030 targets for soil-transmitted helminth control programs
[...]Target #6 aims to achieve universal access to basic sanitation and hygiene in STH-endemic areas. [...]we identified some opportunities to improve existing diagnostic technologies. [...]our experience with the A. lumbricoides copro-antigen ABA-1 [11] points toward the same complexity as for the non-stool-based approaches, namely that (i) stool biomarkers are not yet identified for all STHs; (ii) multiplexing is possible only after (iii) sensitivity; and (iv) specificity for each biomarker and for each infection is fully optimized. [...]v) the relationship between antigens and morbidity is yet to be determined (if possible at all); and (vi) additional processing steps might be required (bead beating) which affect the user-friendliness. [...]it is unlikely that such copro-antigen technologies will become available within the time frame of the 2030 roadmap.
Affordable artificial intelligence-based digital pathology for neglected tropical diseases: A proof-of-concept for the detection of soil-transmitted helminths and Schistosoma mansoni eggs in Kato-Katz stool thick smears
Background With the World Health Organization's (WHO) publication of the 2021-2030 neglected tropical diseases (NTDs) roadmap, the current gap in global diagnostics became painfully apparent. Improving existing diagnostic standards with state-of-the-art technology and artificial intelligence has the potential to close this gap. Methodology/Principal findings We prototyped an artificial intelligence-based digital pathology (AI-DP) device to explore automated scanning and detection of helminth eggs in stool prepared with the Kato-Katz (KK) technique, the current diagnostic standard for diagnosing soil-transmitted helminths (STHs; Ascaris lumbricoides, Trichuris trichiura and hookworms) and Schistosoma mansoni (SCH) infections. First, we embedded a prototype whole slide imaging scanner into field studies in Cambodia, Ethiopia, Kenya and Tanzania. With the scanner, over 300 KK stool thick smears were scanned, resulting in total of 7,780 field-of-view (FOV) images containing 16,990 annotated helminth eggs (Ascaris: 8,600; Trichuris: 4,083; hookworms: 3,623; SCH: 684). Around 90% of the annotated eggs were used to train a deep learning-based object detection model. From an unseen test set of 752 FOV images containing 1,671 manually verified STH and SCH eggs (the remaining 10% of annotated eggs), our trained object detection model extracted and classified helminth eggs from co-infected FOV images in KK stool thick smears, achieving a weighted average precision (± standard deviation) of 94.9% ± 0.8% and a weighted average recall of 96.1% ± 2.1% across all four helminth egg species. Conclusions/Significance We present a proof-of-concept for an AI-DP device for automated scanning and detection of helminth eggs in KK stool thick smears. We identified obstacles that need to be addressed before the diagnostic performance can be evaluated against the target product profiles for both STH and SCH. Given that these obstacles are primarily associated with the required hardware and scanning methodology, opposed to the feasibility of AI-based results, we are hopeful that this research can support the 2030 NTDs road map and eventually other poverty-related diseases for which microscopy is the diagnostic standard.
Quasispecies Analysis of JC Virus DNA Present in Urine of Healthy Subjects
JC virus is a human polyomavirus that infects the majority of people without apparent symptoms in healthy subjects and it is the causative agent of progressive multifocal leucoencephalopathy (PML), a disorder following lytic infection of oligodendrocytes that mainly manifests itself under immunosuppressive conditions. A hallmark for JC virus isolated from PML-brain is the presence of rearrangements in the non-coding control region (NCCR) interspersed between the early and late genes on the viral genome. Such rearrangements are believed to originate from the archetype JC virus which is shed in urine by healthy subjects and PML patients. We applied next generation sequencing to explore the non-coding control region variability in urine of healthy subjects in search for JC virus quasispecies and rearrangements reminiscent of PML. For 61 viral shedders (out of a total of 254 healthy subjects) non-coding control region DNA and VP1 (major capsid protein) coding sequences were initially obtained by Sanger sequencing. Deletions between 1 and 28 nucleotides long appeared in ∼24.5% of the NCCR sequences while insertions were only detected in ∼3.3% of the samples. 454 pyrosequencing was applied on a subset of 54 urine samples demonstrating the existence of JC virus quasispecies in four subjects (∼7.4%). Hence, our results indicate that JC virus DNA in urine is not always restricted to one unique virus variant, but can be a mixture of naturally occurring variants (quasispecies) reflecting the susceptibility of the non-coding control region for genomic rearrangements in healthy individuals. Our findings pave the way to explore the presence of viral quasispecies and the altered viral tropism that might go along with it as a potential risk factor for opportunistic secondary infections such as PML.
Multimodal biomarker discovery for active Onchocerca volvulus infection
The neglected tropical disease onchocerciasis, or river blindness, is caused by infection with the filarial nematode Onchocerca volvulus . Current estimates indicate that 17 million people are infected worldwide, the majority of them living in Africa. Today there are no non-invasive tests available that can detect ongoing infection, and that can be used for effective monitoring of elimination programs. In addition, to enable pharmacodynamic studies with novel macrofilaricide drug candidates, surrogate endpoints and efficacy biomarkers are needed but are non-existent. We describe the use of a multimodal untargeted mass spectrometry-based approach (metabolomics and lipidomics) to identify onchocerciasis-associated metabolites in urine and plasma, and of specific lipid features in plasma of infected individuals ( O . volvulus infected cases: 68 individuals with palpable nodules; lymphatic filariasis cases: 8 individuals; non-endemic controls: 20 individuals). This work resulted in the identification of elevated concentrations of the plasma metabolites inosine and hypoxanthine as biomarkers for filarial infection, and of the urine metabolite cis -cinnamoylglycine (CCG) as biomarker for O . volvulus . During the targeted validation study, metabolite-specific cutoffs were determined (inosine: 34.2 ng/ml; hypoxanthine: 1380 ng/ml; CCG: 29.7 ng/ml) and sensitivity and specificity profiles were established. Subsequent evaluation of these biomarkers in a non-endemic population from a different geographical region invalidated the urine metabolite CCG as biomarker for O . volvulus . The plasma metabolites inosine and hypoxanthine were confirmed as biomarkers for filarial infection. With the availability of targeted LC-MS procedures, the full potential of these 2 biomarkers in macrofilaricide clinical trials, MDA efficacy surveys, and epidemiological transmission studies can be investigated.
Identification of three immunodominant motifs with atypical isotype profile scattered over the Onchocerca volvulus proteome
Understanding the immune response upon infection with the filarial nematode Onchocerca volvulus and the mechanisms that evolved in this parasite to evade immune mediated elimination is essential to expand the toolbox available for diagnostics, therapeutics and vaccines development. Using high-density peptide microarrays we scanned the proteome-wide linear epitope repertoire in Cameroonian onchocerciasis patients and healthy controls from Southern Africa which led to the identification of 249 immunodominant antigenic peptides. Motif analysis learned that 3 immunodominant motifs, encompassing 3 linear epitopes, are present in 70, 43, and 31 of these peptides, respectively and appear to be scattered over the entire proteome in seemingly non-related proteins. These linear epitopes are shown to have an atypical isotype profile dominated by IgG1, IgG3, IgE and IgM, in contrast to the commonly observed IgG4 response in chronic active helminth infections. The identification of these linear epitope motifs may lead to novel diagnostic development but further evaluation of cross-reactivity against common co-infecting human nematode infections will be needed.
Identification of antigenic linear peptides in the soil-transmitted helminth and Schistosoma mansoni proteome
The scientific community identified non stool-based biomarkers as the way forward to support soil-transmitted helminth (STH; Ascaris lumbricoides , Trichuris trichiura and the hookworms Ancylostoma duodenale and Necator americanus ) and schistosome ( S . mansoni and S . haematobium ) deworming programs. This support is needed in making the decision of whether or not to stop preventive chemotherapy intervention efforts and to ultimately transition towards a post-intervention surveillance phase. We applied a two-step micro-array approach to identify antigenic linear epitopes in the STH and S . mansoni proteomes. In a first experiment, we identified antigenic peptides by applying sera from 24 STH and/or S . mansoni infected Ethiopian children on a high-density peptide microarray containing 3.3 million peptides derived from the complete STH and S . mansoni proteomes. A second array experiment with 170,185 peptides that were recognized in the first array was designed to identify non-specific antibody reactivity by applying sera from 24 healthy individuals from Belgium (a non-endemic country). From this array testing cascade, several peptides were identified for STH but none of them appeared to be unique for one species. We therefore concluded that for STH, none of the peptides revealed to be sufficiently sensitive or species specific. For S . mansoni , some promising peptides were identified prompting future investigation. Based on these results, it is unlikely that linear epitopes would be highly useful in detecting species-specific antibody responses to STH in endemic communities. For S . mansoni , one particular peptide of the micro-exon gene 12 (MEG-12) protein deserves further research. In addition, this study emphasizes the need of well-characterized biobanks for biomarker discovery, particularly when the integration of multiple disease programs is envisioned.
Detection of Ascaris lumbricoides infection by ABA-1 coproantigen ELISA
Intestinal worms, or soil-transmitted helminths (STHs), affect hundreds of millions of people in all tropical and subtropical regions of the world. The most prevalent STH is Ascaris lumbricoides. Through large-scale deworming programs, World Health Organization aims to reduce morbidity, caused by moderate-to-heavy intensity infections, below 2%. In order to monitor these control programs, stool samples are examined microscopically for the presence of worm eggs. This procedure requires well-trained personnel and is known to show variability between different operators interpreting the slides. We have investigated whether ABA-1, one of the excretory-secretory products of A. lumbricoides can be used as a coproantigen marker for infection with this parasite. Polyclonal antibodies were generated and a coproantigen ELISA was developed. Using this ELISA, it was found that ABA-1 in stool detected Ascaris infection with a sensitivity of 91.5% and a specificity of 95.3%. Our results also demonstrate that there is a correlation between ABA-1 levels in stool and A. lumbricoides DNA detected in stool. Using a threshold of 18.2 ng/g stool the ABA-1 ELISA correctly assigned 68.4% of infected individuals to the moderate-to-heavy intensity infection group, with a specificity of 97.1%. Furthermore, the levels of ABA-1 in stool were shown to rapidly and strongly decrease upon administration of a standard anthelminthic treatment (single oral dose of 400 mg albendazole). In an Ascaris suum infection model in pigs, it was found that ABA-1 remained undetectable until day 28 and was detected at day 42 or 56, concurrent with the appearance of worm eggs in the stool. This report demonstrates that ABA-1 can be considered an Ascaris -specific coproantigen marker that can be used to monitor infection intensity. It also opens the path for development of point-of-care immunoassay-based tests to determine A. lumbricoides infection in stool at the sample collection site.
2-Methyl-pentanoyl-carnitine (2-MPC): a urine biomarker for patent Ascaris lumbricoides infection
Infections with intestinal worms, such as Ascaris lumbricoides, affect hundreds of millions of people in all tropical and subtropical regions of the world. Through large-scale deworming programs, World Health Organization aims to reduce moderate-to-heavy intensity infections below 1%. Current diagnosis and monitoring of these control programs are solely based on the detection of worm eggs in stool. Here we describe how metabolome analysis was used to identify the A. lumbricoides -specific urine biomarker 2-methyl pentanoyl carnitine (2-MPC). This biomarker was found to be 85.7% accurate in determining infection and 90.5% accurate in determining a moderate-to-heavy infection. Our results also demonstrate that there is a correlation between 2-MPC levels in urine and A. lumbricoides DNA detected in stool. Furthermore, the levels of 2-MPC in urine were shown to rapidly and strongly decrease upon administration of a standard treatment (single oral dose of 400 mg albendazole). In an Ascaris suum infection model in pigs, it was found that, although 2-MPC levels were much lower compared to humans, there was a significant association between urinary 2-MPC levels and both worm counts ( p  = 0.023) and the number of eggs per gram (epg) counts ( p  < 0.001). This report demonstrates that urinary 2-MPC can be considered an A. lumbricoides -specific biomarker that can be used to monitor infection intensity.
Viral miRNAs in plasma and urine divulge JC polyomavirus infection
BACKGROUND: JC polyomavirus (JCPyV) is a widespread human polyomavirus that usually resides latently in its host, but can be reactivated under immune-compromised conditions potentially causing Progressive Multifocal Leukoencephalopathy (PML). JCPyV encodes its own microRNA, jcv-miR-J1. METHODS: We have investigated in 50 healthy subjects whether jcv-miR-J1-5p (and its variant jcv-miR-J1a-5p) can be detected in plasma or urine. RESULTS: We found that the overall detection rate of JCPyV miRNA was 74% (37/50) in plasma and 62% (31/50) in urine. Subjects were further categorized based on JCPyV VP1 serology status and viral shedding. In seronegative subjects, JCPyV miRNA was found in 86% (12/14) and 57% (8/14) of plasma and urine samples, respectively. In seropositive subjects, the detection rate was 69% (25/36) and 64% (23/36) for plasma and urine, respectively. Furthermore, in seropositive subjects shedding virus in urine, higher levels of urinary viral miRNAs were observed, compared to non-shedding seropositive subjects (P < 0.001). No correlation was observed between urinary and plasma miRNAs. CONCLUSION: These data indicate that analysis of circulating viral miRNAs divulge the presence of latent JCPyV infection allowing further stratification of seropositive individuals. Also, our data indicate higher infection rates than would be expected from serology alone.
Assessment of multiplex Onchocerca volvulus peptide ELISA in non-endemic tropical regions
Background Currently, serodiagnosis of infection with the helminth parasite Onchocerca volvulus is limited to the Ov-16 IgG4 test, a test that has limited sensitivity and suboptimal specificity. In previous studies, we identified several linear epitopes that have the potential to supplement the diagnostic toolbox for onchocerciasis. Methods In this study three peptides, bearing in total six linear epitopes were transferred to a multiplex ELISA platform. This multiplex ELISA was used to assess the clinical utility of the peptide serology markers by analyzing sample sets from both O. volvulus endemic and non-endemic regions. Results The multiplex platform was shown to be reproducible and data obtained on the multiplex platform were comparable to the singleplex ELISA data. The clinical utility assessment showed that in a population of school-aged children from western Kenya, a virtually O. volvulus -free area, significant cross-reactivity with an as-yet to be determined immunogen was detected. Conclusions The observations made in this study invalidate the usefulness of the peptide serology markers for onchocerciasis detection. We discuss what could be the origin of this unexpected serological response, but also highlight the need for better characterized biobanks for biomarker discovery activities.