Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,612 result(s) for "Su, Qi"
Sort by:
To what extent did US-China trade war affect the global economy
This research paper discusses the impacts on the global economy and international market affected by the US and China trade war, which started in 2018-19. Led by the previous president of the US, Donald Trump, succeeded by the current president Joe Biden, trade protectionism was brought out to restrict Chinese exports to the US. Due to political, social, economic, and many other factors, both US and China ended up imposing additional tariffs on each other’s imports and setting up more and more restrictions on the international market. These imposed trade barriers between the two major economies in the world significantly influenced the two countries themselves, other bystander economies, and the international market balance. The paper discusses and reveals how the economic conflict affects US and China, both consequences and benefits, and how some countries found opportunities from this conflict, and some resulted in losses. Suggestions for possible solutions which each government can take are also being explained.
The impact of microplastics polystyrene on the microscopic structure of mouse intestine, tight junction genes and gut microbiota
Microplastics, which are tiny plastic particles less than 5 mm in diameter, are widely present in the environment, have become a serious threat to aquatic life and human health, potentially causing ecosystem disorders and health problems. The present study aimed to investigate the effects of microplastics, specifically microplastics-polystyrene (MPs-PS), on the structural integrity, gene expression related to tight junctions, and gut microbiota in mice. A total of 24 Kunming mice aged 30 days were randomly assigned into four groups: control male (CM), control female (CF), PS-exposed male (PSM), and PS-exposed female (PSF)(n = 6). There were significant differences in villus height, width, intestinal surface area, and villus height to crypt depth ratio (V/C) between the PS group and the control group(C) (p <0.05). Gene expression analysis demonstrated the downregulation of Claudin-1 , Claudin-2 , Claudin-15 , and Occludin , in both duodenum and jejunum of the PS group (p < 0.05). Analysis of microbial species using 16S rRNA sequencing indicated decreased diversity in the PSF group, as well as reduced diversity in the PSM group at various taxonomic levels. Beta diversity analysis showed a significant difference in gut microbiota distribution between the PS-exposed and C groups (R2 = 0.113, p<0.01), with this difference being more pronounced among females exposed to MPs-PS. KEGG analysis revealed enrichment of differential microbiota mainly involved in seven signaling pathways, such as nucleotide metabolism(p<0.05). The relative abundance ratio of transcriptional pathways was significantly increased for the PSF group (p<0.01), while excretory system pathways were for PSM group(p<0.05). Overall findings suggest that MPs-PS exhibit a notable sex-dependent impact on mouse gut microbiota, with a stronger effect observed among females; reduced expression of tight junction genes may be associated with dysbiosis, particularly elevated levels of Prevotellaceae .
The function and mechanisms of action of circular RNAs in Urologic Cancer
Kidney, bladder, and prostate cancer are the three major tumor types of the urologic system that seriously threaten human health. Circular RNAs (CircRNAs), special non-coding RNAs with a stabile structure and a unique back-splicing loop-forming ability, have received recent scientific attention. CircRNAs are widely distributed within the body, with important biologic functions such as sponges for microRNAs, as RNA binding proteins, and as templates for regulation of transcription and protein translation. The abnormal expression of circRNAs in vivo is significantly associated with the development of urologic tumors. CircRNAs have now emerged as potential biomarkers for the diagnosis and prognosis of urologic tumors, as well as targets for the development of new therapies. Although we have gained a better understanding of circRNA, there are still many questions to be answered. In this review, we summarize the properties of circRNAs and detail their function, focusing on the effects of circRNA on proliferation, metastasis, apoptosis, metabolism, and drug resistance in kidney, bladder, and prostate cancers.
Interactive diversity promotes the evolution of cooperation in structured populations
Evolutionary games on networks traditionally assume that each individual adopts an identical strategy to interact with all its neighbors in each generation. Considering the prevalent diversity of individual interactions in the real society, here we propose the concept of interactive diversity, which allows individuals to adopt different strategies against different neighbors in each generation. We investigate the evolution of cooperation based on the edge dynamics rather than the traditional nodal dynamics in networked systems. The results show that, without invoking any other mechanisms, interactive diversity drives the frequency of cooperation to a high level for a wide range of parameters in both well-mixed and structured populations. Even in highly connected populations, cooperation still thrives. When interactive diversity and large topological heterogeneity are combined together, however, in the relaxed social dilemma, cooperation level is lower than that with just one of them, implying that the combination of many promotive factors may make a worse outcome. By an analytical approximation, we get the condition under which interactive diversity provides more advantages for cooperation than traditional evolutionary dynamics does. Numerical simulations validating the approximation are also presented. Our work provides a new line to explore the latent relation between the ubiquitous cooperation and individuals' distinct responses in different interactions. The presented results suggest that interactive diversity should receive more attention in pursuing mechanisms fostering cooperation.
Heterogeneity in tertiary lymphoid structures predicts distinct prognosis and immune microenvironment characterizations of clear cell renal cell carcinoma
BackgroundTertiary lymphoid structures (TLS) are organized aggregates of immune cells that develop postnatally in non-lymphoid tissues and are associated with pathological conditions. TLS typically comprise B-cell follicles containing and are encompassed by T- cell zones and dendritic cells. The prognostic and predictive value of TLS in the tumor microenvironment (TME) as potential mediators of antitumor immunity have gained interest. However, the precise relationship between localization and maturation of TLS and the clinical outcome of their presence in clear cell renal cell carcinoma (ccRCC) is yet to be elucidated.MethodsImmunohistochemistry and multispectral fluorescence were used to evaluate the TLS heterogeneity along with TME cell-infiltrating characterizations. A thorough investigation of the prognostic implications of the TLS heterogeneity in 395 patients with ccRCC from two independent cohorts was conducted. Associations between TLS heterogeneity and immunologic activity were assessed by quantifying the immune cell infiltration.ResultsInfiltrated TLS were identified in 34.2% of the ccRCC samples (N=395). These TLS were found to be tumor-proximal, tumor-distal, or both in 37.8%, 74.1%, and 11.9% of the TLS-positive cases, respectively. A higher proportion of early TLS was found in tumor-distal TLS (p=0.016), while tumor-proximal TLS primarily comprised secondary follicle-like structures (p=0.004). In the main study cohort (Fudan University Shanghai Cancer Center, N=290), Kaplan-Meier analyses revealed a significant correlation between the presence of tumor-proximal TLS and improved progression-free survival (PFS, p<0.001) and overall survival (OS, p=0.002). Conversely, the presence of tumor-distal TLS was associated with poor PFS (p=0.02) and OS (p=0.021). These findings were further validated in an external validation set of 105 patients with ccRCC. Notably, the presence of mature TLS (namely secondary follicle-like TLS, with CD23+ germinal center) was significantly associated with better clinical outcomes in patients with ccRCC. Furthermore, novel nomograms incorporating the presence of tumor-proximal TLS demonstrated remarkable predictability for the 8-year outcomes of resected ccRCC (area under the curve >0.80). Additionally, ccRCC samples with tumor-distal TLS enriched with primary follicle-like TLS exhibited higher programmed death-ligand 1 tumor-associated macrophages levels and regulatory T cells infiltration in the tumor-distal region, indicative of a suppressive TME.ConclusionThis study for the first time elucidates the impact of TLS localization and maturation heterogeneities on the divergent clinical outcomes of ccRCC. The findings reveal that most TLS in ccRCC are located in the tumor-distal area and are associated with immature, immunosuppressive characterizations. Furthermore, our findings corroborate previous research demonstrating that tumor-proximal TLS were associated with favorable clinical outcomes.
Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications
The gastrointestinal tract is involved in coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The gut microbiota has important roles in viral entry receptor angiotensin-converting enzyme 2 (ACE2) expression, immune homeostasis, and crosstalk between the gut and lungs, the ‘gut–lung axis’. Emerging preclinical and clinical studies indicate that the gut microbiota might contribute to COVID-19 pathogenesis and disease outcomes; SARS-CoV-2 infection was associated with altered intestinal microbiota and correlated with inflammatory and immune responses. Here, we discuss the cutting-edge evidence on the interactions between SARS-CoV-2 infection and the gut microbiota, key microbial changes in relation to COVID-19 severity and host immune dysregulations with the possible underlying mechanisms, and the conceivable consequences of the pandemic on the human microbiome and post-pandemic health. Finally, potential modulatory strategies of the gut microbiota are discussed. These insights could shed light on the development of microbiota-based interventions for COVID-19.The gastrointestinal tract is involved in COVID-19, gastrointestinal symptoms can occur and marked changes in the gut microbiota have been observed. This Perspective highlights interactions between the gut microbiota and SARS-CoV-2 infection and increasing interest in the gut–lung axis.
Identification of therapeutic targets for chronic kidney disease through Mendelian randomization analysis of druggable genes
Chronic Kidney Disease (CKD) is a multifaceted and gradually advancing condition characterized by a complex pathogenesis. The current therapeutic options for CKD remain limited in efficacy. Consequently, the identification and exploration of novel drug targets for CKD are of paramount importance. We identified cis-expression quantitative trait loci (cis-eQTLs) with potential as drug targets from the eQTLGen Consortium database to serve as the exposure. For the outcome, we utilized a genome-wide association study (GWAS) of chronic kidney disease (CKD) from the FinnGen database, which comprised a case group of 11,265 individuals and a control group of 436,208 individuals. MR analysis was employed to investigate druggable genes closely associated with CKD. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to elucidate the functional roles of these significant genes. Finally, a colocalization analysis was conducted to determine the likelihood that a cis-eQTL for a druggable gene and CKD share a causal variant. The expression of 12 genes was found to be significantly associated with CKD risk, with a false discovery rate (FDR) of less than 0.05. GO and KEGG enrichment analyses indicated that these genes are primarily involved in the regulation of MAP kinase activity, regulation of protein serine/threonine kinase activity, Gap junction, Platelet activation and Oxytocin signaling pathway. The colocalization analysis results suggested that CKD and the TUBB gene may share a causal variant, with a posterior probability (PP.H4) exceeding 80% (TUBB: 97.27%). Compelling statistical evidence indicates that TUBB represents the most promising pharmacological target for the treatment of CKD. This study not only identifies potential therapeutic targets but also offers valuable insights for future drug development in the context of CKD.
Evolutionary dynamics of behavioral motivations for cooperation
Human decision-making is shaped by underlying motivations, which reflect both subjective well-being and fundamental biological needs. Different needs are often prioritized and traded off against one another. Here we develop a theoretical framework to study the evolution of behavioral motivations, encompassing both philanthropic (cooperating after personal needs are met) and aspirational (cooperating to fulfill personal needs) motivations. Our findings show that when the ratio of benefits to costs for cooperation exceeds a critical threshold, individuals initially driven by aspirational motivations can transition to philanthropic motivations with a low reference point for cooperation, resulting in increased cooperation. Furthermore, the critical threshold depends on the structure of the underlying social network, with network modifications capable of reversing the evolutionary trajectory of motivations. Our results reveal the complex interplay between needs, motivations, social networks, and decision-making, offering insights into how evolution shapes not only cooperative behaviors but also the motivations behind them. Human decision-making, including cooperation, is shaped by motivations. Here, the authors develop a modelling framework to show that motivations for cooperation evolve when the benefit-to-cost ratio exceeds a threshold and social network structure can alter the evolutionary outcome.
Momordica charantia Exosome-Like Nanoparticles Exert Neuroprotective Effects Against Ischemic Brain Injury via Inhibiting Matrix Metalloproteinase 9 and Activating the AKT/GSK3β Signaling Pathway
Plant exosome-like nanoparticles (ELNs) have shown great potential in treating tumor and inflammatory diseases, but the neuroprotective effect of plant ELNs remains unknown. In the present study, we isolated and characterized novel ELNs from Momordica charantia (MC) and investigated their neuroprotective effects against cerebral ischemia-reperfusion injury. In the present study, MC-ELNs were isolated by ultracentrifugation and characterized. Male Sprague–Dawley rats were subjected to middle cerebral artery occlusion (MCAO) and MC-ELN injection intravenously. The integrity of the blood–brain barrier (BBB) was examined by Evans blue staining and with the expression of matrix metalloproteinase 9 (MMP-9), claudin-5, and ZO-1. Neuronal apoptosis was evaluated by TUNEL and the expression of apoptotic proteins including Bcl2, Bax, and cleaved caspase 3. The major discoveries include: 1) Dil-labeled MC-ELNs were identified in the infarct area; 2) MC-ELN treatment significantly ameliorated BBB disruption, decreased infarct sizes, and reduced neurological deficit scores; 3) MC-ELN treatment obviously downregulated the expression of MMP-9 and upregulated the expression of ZO-1 and claudin-5. Small RNA-sequencing revealed that MC-ELN-derived miRNA5266 reduced MMP-9 expression. Furthermore, MC-ELN treatment significantly upregulated the AKT/GSK3β signaling pathway and attenuated neuronal apoptosis in HT22 cells. Taken together, these findings indicate that MC-ELNs attenuate ischemia-reperfusion–induced damage to the BBB and inhibit neuronal apoptosis probably via the upregulation of the AKT/GSK3β signaling pathway.
Evolution of cooperation on temporal networks
Population structure is a key determinant in fostering cooperation among naturally self-interested individuals in microbial populations, social insect groups, and human societies. Traditional research has focused on static structures, and yet most real interactions are finite in duration and changing in time, forming a temporal network. This raises the question of whether cooperation can emerge and persist despite an intrinsically fragmented population structure. Here we develop a framework to study the evolution of cooperation on temporal networks. Surprisingly, we find that network temporality actually enhances the evolution of cooperation relative to comparable static networks, despite the fact that bursty interaction patterns generally impede cooperation. We resolve this tension by proposing a measure to quantify the amount of temporality in a network, revealing an intermediate level that maximally boosts cooperation. Our results open a new avenue for investigating the evolution of cooperation and other emergent behaviours in more realistic structured populations. Population structure enables emergence of cooperation among individuals, but the impact of the dynamic nature of real interaction networks is not understood. Here, the authors study the evolution of cooperation on temporal networks and find that temporality enhances the evolution of cooperation.