Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
8
result(s) for
"Su, Xinwan"
Sort by:
LncRNA LINK‐A Remodels Tissue Inflammatory Microenvironments to Promote Obesity
2024
High‐fat diet (HFD)‐induced obesity is a crucial risk factor for metabolic syndrome, mainly due to adipose tissue dysfunctions associated with it. However, the underlying mechanism remains unclear. This study has used genetic screening to identify an obesity‐associated human lncRNA LINK‐A as a critical molecule bridging the metabolic microenvironment and energy expenditure in vivo by establishing the HFD‐induced obesity knock‐in (KI) mouse model. Mechanistically, HFD LINK‐A KI mice induce the infiltration of inflammatory factors, including IL‐1β and CXCL16, through the LINK‐A/HB‐EGF/HIF1α feedback loop axis in a self‐amplified manner, thereby promoting the adipose tissue microenvironment remodeling and adaptive thermogenesis disorder, ultimately leading to obesity and insulin resistance. Notably, LINK‐A expression is positively correlated with inflammatory factor expression in individuals who are overweight. Of note, targeting LINK‐A via nucleic acid drug antisense oligonucleotides (ASO) attenuate HFD‐induced obesity and metabolic syndrome, pointing out LINK‐A as a valuable and effective therapeutic target for treating HFD‐induced obesity. Briefly, the results reveale the roles of lncRNAs (such as LINK‐A) in remodeling tissue inflammatory microenvironments to promote HFD‐induced obesity. This manuscript identifies a human obesity‐associated long noncoding RNA, LINK‐A, by generating a de novo knock‐in(KI) mouse model to demonstrate it as a critical molecule bridging the metabolic microenvironment and energy expenditure in vivo via establishing a high‐fat diet (HFD)‐induced obesity KI mouse model and uncovering the mechanisms regulated by the LINK‐A/HB‐EGF/HIF1α feedback loop.
Journal Article
PD‐L1‐Targeting Biomimetic Photoresponsive Thermosensitive Liposomes for Triple‐Negative Breast Cancer
by
Chen, Yijian
,
Tan, Manman
,
Zhu, Linyu
in
Animals
,
B7-H1 Antigen - metabolism
,
Biomimetics - methods
2025
Peptide‐based therapeutic strategies offer considerable potential for tumor immunotherapy but suffer from poor systemic bioavailability, rapid plasma clearance, and limited tumor‐targeting efficiency. To address these challenges, a biomimetic, photothermal‐responsive liposomal delivery system was developed that enables precise delivery of immunotherapeutic peptides while enhancing the synergistic effects of photothermal therapy. This system enhances peptide stability through fluorination, disrupts post‐translational modifications of PD‐L1, and promotes its degradation, thereby amplifying the anti‐tumor immune response. The carrier core consisted of thermosensitive 1,2‐dipalmitoyl‐sn‐glycero‐3‐phosphocholine (DPPC) liposomes loaded with the low‐toxicity photosensitizer indocyanine green (ICG), which facilitated controlled peptide release via the photothermal effect. Simultaneously, mild photothermal stimulation induced immunogenic cell death (ICD), further strengthening anti‐tumor immunity. To enhance tumor targeting, extend systemic circulation time, and improve drug accumulation at tumor sites, the carrier surface was coated with a platelet membrane, which increased biocompatibility and promoted immune evasion. Notably, in vivo studies demonstrated that the developed bioengineering platform significantly suppressed tumor growth in both solid and diffuse malignant tumors while inducing persistent immune memory, thereby facilitating long‐term anti‐tumor immune responses. Collectively, this approach establishes a novel framework for integrating peptide drug delivery with photothermal therapy, offering a promising strategy for advancing tumor immunotherapy. Tan et al. developed a platelet membrane‐coated, thermoresponsive liposome for targeted, light‐controlled delivery of fluorinated peptides that promotes programmed death‐ligand 1 degradation, induces tumor immunogenic cell death, suppresses solid tumors and metastases, and triggers durable immune memory, offering a promising strategy for peptide‐based cancer immunotherapy.
Journal Article
Serum IL-12p40: A novel biomarker for early prediction of minimal change disease relapse following glucocorticoids therapy
2022
Minimal change disease (MCD) has a high recurrence rate, but currently, no biomarker can predict its recurrence. To this end, this study aimed at identifying potential serum cytokines as valuable biomarkers for predicting the risk of MCD recurrence.
Raybiotech 440 cytokine antibody microarray was used to detect the serum samples of eight relapsed, eight non-relapsed MCD patients after glucocorticoid treatment, and eight healthy controls. The differentially expressed cytokines were confirmed by enzyme-linked immunosorbent assay (ELISA) with serum samples from 29 non-relapsed and 35 relapsed MCD patients. The study used the receiver operating characteristic (ROC) curve analysis to investigate the sensitivity and specificity of a serum biomarker for predicting the MCD relapse.
Serum IL-12p40 levels increased significantly in the relapsed group. The Area Under the ROC Curve (AUC) of IL-12p40 was 0.727 (95%CI: 0.597-0.856;
< 0.01). The RNA-sequencing analysis and qPCR assay performed on the IL-12 treated mouse podocytes and the control group showed increased expression of podocyte damage genes, such as connective tissue growth factor (CTGF), matrix metallopeptidase 9 (MMP9), secreted phosphoprotein 1 (SPP1), and cyclooxygenase-2 (COX-2) in the former group.
IL-12p40 may serve as a new biomarker for predicting the risk of MCD recurrence after glucocorticoid treatment, and it may be involved in the pathogenesis and recurrence of MCD.
Journal Article
LncFASA promotes cancer ferroptosis via modulating PRDX1 phase separation
2024
Ferroptosis, a unique type of non-apoptotic cell death resulting from iron-dependent lipid peroxidation, has a potential physiological function in tumor suppression, but its underlying mechanisms have not been fully elucidated. Here, we report that the long non-coding RNA (lncRNA)
LncFASA
increases the susceptibility of triple-negative breast cancer (TNBC) to ferroptosis. As a tumor suppressor,
LncFASA
drives the formation of droplets containing peroxiredoxin1 (PRDX1), a member of the peroxidase family, resulting in the accumulation of lipid peroxidation via the SLC7A11-GPX4 axis. Mechanistically,
LncFASA
directly binds to the Ahpc-TSA domain of PRDX1, inhibiting its peroxidase activity by driving liquid-liquid phase separation, which disrupts intracellular ROS homeostasis. Notably, high
LncFASA
expression indicates favorable overall survival in individuals with breast cancer, and
LncFASA
impairs the growth of breast xenograft tumors by modulating ferroptosis. Together, our findings illustrate the crucial role of this lncRNA in ferroptosis-mediated cancer development and provide new insights into therapeutic strategies for breast cancer.
Journal Article
TRPM2 protects against cisplatin-induced acute kidney injury and mitochondrial dysfunction via modulating autophagy
2023
Background: Cisplatin is a widely used anti-tumor agent but its use is frequently limited by nephrotoxicity. Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel which is generally viewed as a sensor of oxidative stress, and increasing evidence supports its link with autophagy, a critical process for organelle homeostasis. Methods: Cisplatin-induced cell injury and mitochondrial damage were both assessed in WT and Trpm2-knockout mice and primary cells. RNA sequencing, immunofluorescence staining, immunoblotting and flowcytometry were applied to interpret the mechanism of TRPM2 in cisplatin nephrotoxicity. Results: Knockout of TRPM2 exacerbates renal dysfunction, tubular injury and cell apoptosis in a model of acute kidney injury (AKI) induced by treatment with cisplatin. Cisplatin-caused tubular mitochondrial damage is aggravated in TRPM2-deficient mice and cells and, conversely, alleviated by treatment with Mito-TEMPO, a mitochondrial ROS scavenger. TRPM2 deficiency hinders cisplatin-induced autophagy via blockage of Ca2+ influx and subsequent up-regulation of AKT-mTOR signaling. Consistently, cisplatin-induced tubular mitochondrial damage, cell apoptosis and renal dysfunction in TRPM2-deficient mice are mitigated by treatment with a mTOR inhibitor. Conclusion: Our results suggest that the TRPM2 channel plays a protective role in cisplatin-induced AKI via modulating the Ca2+-AKT-mTOR signaling pathway and autophagy, providing novel insights into the pathogenesis of kidney injury.Background: Cisplatin is a widely used anti-tumor agent but its use is frequently limited by nephrotoxicity. Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel which is generally viewed as a sensor of oxidative stress, and increasing evidence supports its link with autophagy, a critical process for organelle homeostasis. Methods: Cisplatin-induced cell injury and mitochondrial damage were both assessed in WT and Trpm2-knockout mice and primary cells. RNA sequencing, immunofluorescence staining, immunoblotting and flowcytometry were applied to interpret the mechanism of TRPM2 in cisplatin nephrotoxicity. Results: Knockout of TRPM2 exacerbates renal dysfunction, tubular injury and cell apoptosis in a model of acute kidney injury (AKI) induced by treatment with cisplatin. Cisplatin-caused tubular mitochondrial damage is aggravated in TRPM2-deficient mice and cells and, conversely, alleviated by treatment with Mito-TEMPO, a mitochondrial ROS scavenger. TRPM2 deficiency hinders cisplatin-induced autophagy via blockage of Ca2+ influx and subsequent up-regulation of AKT-mTOR signaling. Consistently, cisplatin-induced tubular mitochondrial damage, cell apoptosis and renal dysfunction in TRPM2-deficient mice are mitigated by treatment with a mTOR inhibitor. Conclusion: Our results suggest that the TRPM2 channel plays a protective role in cisplatin-induced AKI via modulating the Ca2+-AKT-mTOR signaling pathway and autophagy, providing novel insights into the pathogenesis of kidney injury.
Journal Article
Targeting iron metabolism using gallium nanoparticles to suppress ferroptosis and effectively mitigate acute kidney injury
by
Han, Fei
,
Zhou, Qin
,
Mao, Jianhua
in
Adenine
,
Atomic/Molecular Structure and Spectra
,
Biocompatibility
2022
Ferroptosis plays a critical pathophysiological role in several types of acute kidney injury (AKI). The development of nanomaterials targeting iron metabolism and ferroptosis is a promising approach for AKI treatment. Herein, we synthesized gallic acid-gallium polyvinyl pyrrolidone nanoparticles (GGP NPs) as a potential iron-scavenging agent because of their nearly ionic radius and chemical similarity with iron. The results indicated that GGP NPs accumulated in tubular epithelial cells and showed good biocompatibility. GGP NPs significantly inhibited cisplatin (CP)-induced ferroptosis in HK-2 cells by reducing the accumulation of intracellular free iron and mitochondrial dysfunction, and suppressing the perturbations of ferroptosis processes, including lipid peroxidation, nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH) levels, glutathione peroxidase 4 (GPX4) activity, and ferritinophagy. An
in vivo
study demonstrated that treatment with GGP NPs significantly ameliorated the renal tubular injury and mitochondrial damage induced by CP treatment or ischemia-reperfusion injury. Our study suggests that GGP NPs may be an effective and promising candidate for AKI treatment and enable potential clinical translation.
Journal Article
Renal tubule-targeted dexrazoxane suppresses ferroptosis in acute kidney injury by inhibiting ACMSD
by
Han, Fei
,
Mao, Jianhua
,
Xie, Xishao
in
4-Hydroxynonenal
,
Atomic/Molecular Structure and Spectra
,
Biomarkers
2023
Acute kidney injury (AKI) is a heterogeneous clinical complication with no existing definite or particular therapies. Therefore, molecular mechanisms and approaches for treating acute kidney injury are in urgent need. Herein, we demonstrated that dexrazoxane (DXZ), a U.S. Food and Drug Administration (FDA)-approved cardioprotective drug, can both functionally and histologically attenuate cisplatin or ischemia-reperfusion injury-induced AKI
in vitro
and
in vivo
via inhibiting ferroptosis specifically. This effect is characterized by decreasing lipid peroxidation, shown by the biomarker of oxidative stress 4-hydroxynonenal (HNE) and prostaglandinendoperoxide synthase 2 (Ptgs2), while reversing the downregulation of glutathione peroxidase 4 (GPX4) and ferritin 1 (FTH-1). Mechanistically, the results revealed that DXZ targeted at the renal tubule significantly inhibits ferroptosis by suppressing
α
-amino-
β
-carboxymuconate-
ε
-semialdehyde decarboxylase (ACMSD). Furthermore, the conjugation of dexrazoxane and polysialic acid (DXZ-PSA) is specifically designed and utilized to enhance the therapeutic effect of DXZ by long-term effect in the kidney, especially retention and targeting in the renal tubules. This study provides a novel therapeutic approach and mechanistic insight for AKI by inhibiting ferroptosis through a new type drug DXZ-PSA with the enhanced renal distribution.
Journal Article
Circular RNA circDVL1 inhibits clear cell renal cell carcinoma progression through the miR-412-3p/PCDH7 axis
2022
Clear cell renal cell carcinoma (ccRCC) is a primary kidney cancer with high aggressive phenotype and extremely poor prognosis. Accumulating evidence suggests that circular RNAs (circRNAs) play pivotal roles in the occurrence and development of various human cancers. However, the expression, clinical significance and regulatory role of circRNAs in ccRCC remain largely unclear. Here we report that circDVL1 to be reduced in the serums and tissues from ccRCC patients, and to negatively correlate with ccRCC malignant features. Overexpression of circDVL1 inhibits proliferation, induces G1/S arrest, triggers apoptosis, and reduces migration and invasion in different ccRCC cells
. Correspondingly, circDVL1 overexpression suppresses ccRCC tumorigenicity in a mouse xenograft model. Mechanistically, circDVL1 serves as a sponge for oncogenic miR-412-3p, thereby preventing miR-412-3p-mediated repression of its target protocadherin 7 (PCDH7) in ccRCC cells. Collectively, our results demonstrate that circDVL1 exerts tumor-suppressive function during ccRCC progression through circDVL1/miR-412-3p/PCDH7 axis, and suggest that circDVL1 could be a novel diagnostic and prognositc marker and therapeutic target for ccRCC.
Journal Article