Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2
result(s) for
"Subarkah, Darwinaji"
Sort by:
Geochronology and formal stratigraphy of the Sturtian glaciation in the Adelaide superbasin
by
Gilbert, Sarah E
,
Amos, Kathryn J
,
Lloyd, Jarred C
in
Adelaide Superbasin
,
ancient ice ages
,
Australasia
2023
The glaciogenic nature of the Yudnamutana Subgroup was first recognized over a century ago, and its global significance was recognized shortly after, with the eventual postulation of a global Sturtian Glaciation and Snowball Earth theory. Much debate on the origin and timing of these rocks, locally and globally, has ensued in the years since. A significant corpus of research on the lithology, sedimentology, geochronology and formal lithostratigraphy of these sequences globally has attempted to resolve many of these debates. In the type area for the Sturtian Glaciation, South Australia's Adelaide Superbasin, the lithostratigraphy and sedimentology are well understood; however, formal stratigraphic nomenclature has remained complicated and contested. Absolute dates on the stratigraphy are also extremely sparse in this area. The result of these longstanding issues has been disagreement as to whether the sedimentary rocks of the Yudnamutana Subgroup are truly correlative throughout South Australia, and if they were deposited in the same time span recently defined for Sturtian glacial rocks globally, c. 717 Ma to c. 660 Ma. This study presents a large detrital zircon study, summarizes and compiles existing global geochronology for the Sturtian Glaciation and revises the formal lithostratigraphic framework of the Yudnamutana Subgroup. We show equivalence of the rocks that comprise the revised Sturt Formation, the main glaciogenic unit of the Yudnamutana Subgroup, and that it was deposited within the time span globally defined for the Sturtian Glaciation.
Journal Article
Constraining the geothermal parameters of in situ Rb–Sr dating on Proterozoic shales and their subsequent applications
2022
Recent developments in tandem laser ablation mass spectrometer technology have demonstrated the capacity for separating parent and daughter isotopes of the same mass online. As a result, beta-decay chronometers can now be applied to the geological archive in situ as opposed to through traditional whole-rock digestions. One novel application of this technique is the in situ Rb–Sr dating of Proterozoic shales that are dominated by authigenic clays such as illite. This method can provide a depositional window for shales by differentiating signatures of early diagenetic processes versus late-stage secondary alteration. However, the hydrothermal sensitivity of the Rb–Sr isotopic system across geological timescales in shale-hosted clay minerals is not well understood. As such, we dated the Mesoproterozoic Velkerri Formation from the Altree 2 well in the Beetaloo Sub-basin (greater McArthur Basin), northern Australia, using this approach. We then constrained the thermal history of these units using common hydrocarbon maturity indicators and modelled effects of contact heating due to the intrusion of the Derim Derim Dolerite. In situ Rb–Sr dating of mature, oil-prone shales in the diagenetic zone from the Velkerri Formation yielded ages of 1448 ± 81, 1434 ± 19, and 1421 ± 139 Ma. These results agree with previous Re–Os dating of the unit and are interpreted as recording the timing of an early diagenetic event soon after deposition. Conversely, overmature, gas-prone shales in the anchizone sourced from deeper within the borehole were dated at 1322 ± 93 and 1336 ± 40 Ma. These ages are younger than the expected depositional window for the Velkerri Formation. Instead, they are consistent with the age of the Derim Derim Dolerite mafic intrusion intersected 800 m below the Velkerri Formation. Thermal modelling suggests that a single intrusion of 75 m thickness would have been capable of producing a significant hydrothermal perturbation radiating from the sill top. The intrusion width proposed by this model is consistent with similar Derim Derim Dolerite sill thicknesses found elsewhere in the McArthur Basin. The extent of the hydrothermal aureole induced by this intrusion coincides with the window in which kerogen from the Velkerri Formation becomes overmature. As a result, the mafic intrusion intersected here is interpreted to have caused kerogen in these shales to enter the gas window, induced fluids that mobilize trace elements, and reset the Rb–Sr chronometer. Consequently, we propose that the Rb–Sr chronometer in shales may be sensitive to temperatures of ca. 120 ∘C in hydrothermal reactions but can withstand temperatures of more than 190 ∘C in thermal systems not dominated by fluids. Importantly, this study demonstrates a framework for the combined use of in situ Rb–Sr dating and kerogen maturation indicators to help reveal the thermochronological history of Proterozoic sedimentary basins. As such, this approach can be a powerful tool for identifying the hydrocarbon potential of source rocks in similar geological settings.
Journal Article