Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Suerink, Manon"
Sort by:
Enrichment of colibactin-associated mutational signatures in unexplained colorectal polyposis patients
Background Colibactin, a genotoxin produced by polyketide synthase harboring ( pks + ) bacteria, induces double-strand breaks and chromosome aberrations. Consequently, enrichment of pks + Escherichia coli in colorectal cancer and polyposis suggests a possible carcinogenic effect in the large intestine. Additionally, specific colibactin-associated mutational signatures; SBS88 and ID18 in the Catalogue of Somatic Mutations in Cancer database, are detected in colorectal carcinomas. Previous research showed that a recurrent APC splice variant perfectly fits SBS88. Methods In this study, we explore the presence of colibactin-associated signatures and fecal pks in an unexplained polyposis cohort. Somatic targeted Next-Generation Sequencing (NGS) was performed for 379 patients. Additionally, for a subset of 29 patients, metagenomics was performed on feces and mutational signature analyses using Whole-Genome Sequencing (WGS) on Formalin-Fixed Paraffin Embedded (FFPE) colorectal tissue blocks. Results NGS showed somatic APC variants fitting SBS88 or ID18 in at least one colorectal adenoma or carcinoma in 29% of patients. Fecal metagenomic analyses revealed enriched presence of pks genes in patients with somatic variants fitting colibactin-associated signatures compared to patients without variants fitting colibactin-associated signatures. Also, mutational signature analyses showed enrichment of SBS88 and ID18 in patients with variants fitting these signatures in NGS compared to patients without. Conclusions These findings further support colibactins ability to mutagenize colorectal mucosa and contribute to the development of colorectal adenomas and carcinomas explaining a relevant part of patients with unexplained polyposis.
Declining detection rates for APC and biallelic MUTYH variants in polyposis patients, implications for DNA testing policy
This study aimed to determine the prevalence of APC-associated familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP) in a large cohort, taking into account factors as adenoma count and year of diagnosis. All application forms used to send patients in for APC and MUTYH variant analysis between 1992 and 2017 were collected (n = 2082). Using the data provided on the application form, the APC and biallelic MUTYH prevalence was determined and possible predictive factors were examined using multivariate multinomial logistic regression analysis in SPSS. The prevalence of disease causing variants in the APC gene significantly increases with adenoma count while MAP shows a peak prevalence in individuals with 50–99 adenomas. Logistic regression analysis shows significant odds ratios for adenoma count, age at diagnosis, and, interestingly, a decline in the chance of finding a variant in either gene over time. Moreover, in 22% (43/200) of patients with FAP-related extracolonic manifestations a variant was identified. The overall detection rates are above 10% for patients with >10 adenomas aged <60 and >20 adenomas aged <70. Patients with variants outside these criteria had FAP-related extracolonic manifestations, colorectal cancer aged <40, somatic KRAS c.34G > T variant in the tumor or a first-degree relative with >10 adenomas. Therefore, APC and MUTYH testing in patients with >10 adenomas aged <60 and with >20 adenomas aged <70 is advised. Almost all FAP and MAP patients not meeting these criteria showed other characteristics that can be used as an indication to prompt genetic testing.
The effect of genotypes and parent of origin on cancer risk and age of cancer development in PMS2 mutation carriers
Lynch syndrome (LS), a heritable disorder with an increased risk of primarily colorectal cancer (CRC) and endometrial cancer (EC), can be caused by mutations in the PMS2 gene. We wished to establish whether genotype and/or parent-of-origin effects (POE) explain (part of) the reported variability in severity of the phenotype. European PMS2 mutation carriers (n = 381) were grouped and compared based on RNA expression and whether the mutation was inherited paternally or maternally. Mutation carriers with loss of RNA expression (group 1) had a significantly lower age at CRC diagnosis (51.1 years vs. 60.0 years, P = 0.035) and a lower age at EC diagnosis (55.8 years vs. 61.0 years, P = 0.2, nonsignificant) compared with group 2 (retention of RNA expression). Furthermore, group 1 showed slightly higher, but nonsignificant, hazard ratios (HRs) for both CRC (HR: 1.31, P = 0.38) and EC (HR: 1.22, P = 0.72). No evidence for a significant parent-of-origin effect was found for either CRC or EC. PMS2 mutation carriers with retention of RNA expression developed CRC 9 years later than those with loss of RNA expression. If confirmed, this finding would justify a delay in surveillance for these cases. Cancer risk was not influenced by a parent-of-origin effect.
Constitutional mismatch repair deficiency as a differential diagnosis of neurofibromatosis type 1: consensus guidelines for testing a child without malignancy
Constitutional mismatch repair deficiency (CMMRD) is a rare childhood cancer predisposition syndrome caused by biallelic germline mutations in one of four mismatch-repair genes. Besides very high tumour risks, CMMRD phenotypes are often characterised by the presence of signs reminiscent of neurofibromatosis type 1 (NF1). Because NF1 signs may be present prior to tumour onset, CMMRD is a legitimate differential diagnosis in an otherwise healthy child suspected to have NF1/Legius syndrome without a detectable underlying NF1/SPRED1 germline mutation. However, no guidelines indicate when to counsel and test for CMMRD in this setting. Assuming that CMMRD is rare in these patients and that expected benefits of identifying CMMRD prior to tumour onset should outweigh potential harms associated with CMMRD counselling and testing in this setting, we aimed at elaborating a strategy to preselect, among children suspected to have NF1/Legius syndrome without a causative NF1/SPRED1 mutation and no overt malignancy, those children who have a higher probability of having CMMRD. At an interdisciplinary workshop, we discussed estimations of the frequency of CMMRD as a differential diagnosis of NF1 and potential benefits and harms of CMMRD counselling and testing in a healthy child with no malignancy. Preselection criteria and strategies for counselling and testing were developed and reviewed in two rounds of critical revisions. Existing diagnostic CMMRD criteria were adapted to serve as a guideline as to when to consider CMMRD as differential diagnosis of NF1/Legius syndrome. In addition, counselling and testing strategies are suggested to minimise potential harms.
ERN GENTURIS guidelines on constitutional mismatch repair deficiency diagnosis, genetic counselling, surveillance, quality of life, and clinical management
Constitutional mismatch repair deficiency (CMMRD), first described 25 years ago, confers an extremely high and lifelong cancer risk, including haematologic, brain, and gastrointestinal tract malignancies, and is associated with several non-neoplastic features. Our understanding of this condition has improved and novel assays to assist CMMRD diagnosis have been developed. Surveillance protocols need adjustment taking into account recent observational prospective studies assessing their effectiveness. Response to immune checkpoint inhibitors and the effectiveness and toxicity of other treatments have been described. An update and merging of the different guidelines on diagnosis and clinical management of CMMRD into one comprehensive guideline was needed. Seventy-two expert members of the European Reference Network GENTURIS and/or the European care for CMMRD consortium and one patient representative developed recommendations for CMMRD diagnosis, genetic counselling, surveillance, quality of life, and clinical management based on a systematic literature search and comprehensive literature review and a modified Delphi process. Recommendations for the diagnosis of CMMRD provide testing criteria, propose strategies for CMMRD testing, and define CMMRD diagnostic criteria. Recommendations for surveillance cover each CMMRD-associated tumour type and contain information on starting age, frequency, and surveillance modality. Recommendations for clinical management cover cancer treatment, management of benign tumours or non-neoplastic features, and chemoprevention. Recommendations also address genetic counselling and quality of life. Based on existing guidelines and currently available data, we present 82 recommendations to improve and standardise the care of CMMRD patients in Europe. These recommendations are not meant to be prescriptive and may be adjusted based on individual decisions.
Reanalysis of whole-exome sequencing (WES) data of children with neurodevelopmental disorders in a standard patient care context
This study aims to inform future genetic reanalysis management by evaluating the yield of whole-exome sequencing (WES) reanalysis in standard patient care in the Netherlands. Single-center data of 159 patients with a neurodevelopmental disorder (NDD), in which WES analysis and reanalysis were performed between January 1, 2014, and December 31, 2021, was retrospectively collected. Patients were included if they were under the age of 18 years at initial analysis and if this initial analysis did not result in a diagnosis. Demographic, phenotypic, and genotypic characteristics of patients were collected and analyzed. The primary outcomes of our study were (i) diagnostic yield at reanalysis, (ii) reasons for detecting a new possibly causal variant at reanalysis, (iii) unsolicited findings, and (iv) factors associated with positive result of reanalysis. In addition, we conducted a questionnaire study amongst the 7 genetic department in the Netherlands creating an overview of used techniques, yield, and organization of WES reanalysis. The single-center data show that in most cases, WES reanalysis was initiated by the clinical geneticist (65%) or treating physician (30%). The mean time between initial WES analysis and reanalysis was 3.7 years. A new (likely) pathogenic variant or VUS with a clear link to the phenotype was found in 20 initially negative cases, resulting in a diagnostic yield of 12.6%. In 75% of these patients, the diagnosis had clinical consequences, as for example, a screening plan for associated signs and symptoms could be devised. Most (32%) of the (likely) causal variants identified at WES reanalysis were discovered due to a newly described gene-disease association. In addition to the 12.6% diagnostic yield based on new diagnoses, reclassification of a variant of uncertain significance found at initial analysis led to a definite diagnosis in three patients. Diagnostic yield was higher in patients with dysmorphic features compared to patients without clear dysmorphic features (yield 27% vs. 6%; p  = 0.001). Conclusions : Our results show that WES reanalysis in patients with NDD in standard patient care leads to a substantial increase in genetic diagnoses. In the majority of newly diagnosed patients, the diagnosis had clinical consequences. Knowledge about the clinical impact of WES reanalysis, clinical characteristics associated with higher yield, and the yield per year after a negative WES in larger clinical cohorts is warranted to inform guidelines for genetic reanalysis. These guidelines will be of great value for pediatricians, pediatric rehabilitation specialists, and pediatric neurologists in daily care of patients with NDD. What is Known: • Whole exome sequencing can cost-effectively identify a genetic cause of intellectual disability in about 30–40% of patients. • WES reanalysis in a research setting can lead to a definitive diagnosis in 10–20% of previously exome negative cases. What is New: • WES reanalysis in standard patient care resulted in a diagnostic yield of 13% in previously exome negative children with NDD. • The presence of dysmorphic features is associated with an increased diagnostic yield of WES reanalysis.
APC mosaicism, not always isolated: two first-degree relatives with apparently distinct APC mosaicism
APC mosaicism is briefly mentioned in the recently published BSG guidelines on hereditary colorectal cancer.1 We wish to present a family that underlines its relevance.
High-sensitivity microsatellite instability assessment for the detection of mismatch repair defects in normal tissue of biallelic germline mismatch repair mutation carriers
IntroductionLynch syndrome (LS) and constitutional mismatch repair deficiency (CMMRD) are hereditary cancer syndromes associated with mismatch repair (MMR) deficiency. Tumours show microsatellite instability (MSI), also reported at low levels in non-neoplastic tissues. Our aim was to evaluate the performance of high-sensitivity MSI (hs-MSI) assessment for the identification of LS and CMMRD in non-neoplastic tissues.Materials and methodsBlood DNA samples from 131 individuals were grouped into three cohorts: baseline (22 controls), training (11 CMMRD, 48 LS and 15 controls) and validation (18 CMMRD and 18 controls). Custom next generation sequencing panel and bioinformatics pipeline were used to detect insertions and deletions in microsatellite markers. An hs-MSI score was calculated representing the percentage of unstable markers.ResultsThe hs-MSI score was significantly higher in CMMRD blood samples when compared with controls in the training cohort (p<0.001). This finding was confirmed in the validation set, reaching 100% specificity and sensitivity. Higher hs-MSI scores were detected in biallelic MSH2 carriers (n=5) compared with MSH6 carriers (n=15). The hs-MSI analysis did not detect a difference between LS and control blood samples (p=0.564).ConclusionsThe hs-MSI approach is a valuable tool for CMMRD diagnosis, especially in suspected patients harbouring MMR variants of unknown significance or non-detected biallelic germline mutations.
De novo heterozygous missense variants in CELSR1 as cause of fetal pleural effusions and progressive fetal hydrops
Fetal hydrops as detected by prenatal ultrasound usually carries a poor prognosis depending on the underlying aetiology. We describe the prenatal and postnatal clinical course of two unrelated female probands in whom de novo heterozygous missense variants in the planar cell polarity gene CELSR1 were detected using exome sequencing. Using several in vitro assays, we show that the CELSR1 p.(Cys1318Tyr) variant disrupted the subcellular localisation, affected cell-cell junction, impaired planar cell polarity signalling and lowered proliferation rate. These observations suggest that deleterious rare CELSR1 variants could be a possible cause of fetal hydrops.
Prevalence of mismatch repair deficiency and Lynch syndrome in a cohort of unselected small bowel adenocarcinomas
AimsPrevious estimates of the prevalence of mismatch repair (MMR) deficiency and Lynch syndrome in small bowel cancer have varied widely. The aim of this study was to establish the prevalence of MMR deficiency and Lynch syndrome in a large group of small bowel adenocarcinomas.MethodsTo this end, a total of 400 small bowel adenocarcinomas (332 resections, 68 biopsies) were collected through the Dutch nationwide registry of histopathology and cytopathology (Pathologisch-Anatomisch Landelijk Geautomatiseerd Archief (PALGA)). No preselection criteria, such as family history, were applied, thus avoiding (ascertainment) bias. MMR deficiency status was determined by immunohistochemical staining of MMR proteins, supplemented by MLH1 promoter hypermethylation analysis and next generation sequencing of the MMR genes.ResultsMMR deficiency was observed in 22.3% of resected and 4.4% of biopsied small bowel carcinomas. Prevalence of Lynch syndrome was 6.2% in resections and 0.0% in biopsy samples. Patients with Lynch syndrome-associated small bowel cancer were significantly younger at the time of diagnosis than patients with MMR-proficient and sporadic MMR-deficient cancers (mean age of 54.6 years vs 66.6 years and 68.8 years, respectively, p<0.000).ConclusionsThe prevalence of MMR deficiency and Lynch syndrome in resected small bowel adenocarcinomas is at least comparable to prevalence in colorectal cancers, a finding relevant both for treatment (immunotherapy) and family management. We recommend that all small bowel adenocarcinomas should be screened for MMR deficiency.