Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
30 result(s) for "Sugumaran, Ramanathan"
Sort by:
Seasonal Effect on Tree Species Classification in an Urban Environment Using Hyperspectral Data, LiDAR, and an Object- Oriented Approach
The objective of the current study was to analyze the seasonal effect on differentiating tree species in an urban environment using multi-temporal hyperspectral data, Light Detection And Ranging (LiDAR) data, and a tree species database collected from the field. Two Airborne Imaging Spectrometer for Applications (AISA) hyperspectral images were collected, covering the Summer and Fall seasons. In order to make both datasets spatially and spectrally compatible, several preprocessing steps, including band reduction and a spatial degradation, were performed. An object-oriented classification was performed on both images using training data collected randomly from the tree species database. The seven dominant tree species (Gleditsia triacanthos, Acer saccharum, Tilia Americana, Quercus palustris, Pinus strobus and Picea glauca) were used in the classification. The results from this analysis did not show any major difference in overall accuracy between the two seasons. Overall accuracy was approximately 57% for the Summer dataset and 56% for the Fall dataset. However, the Fall dataset provided more consistent results for all tree species while the Summer dataset had a few higher individual class accuracies. Further, adding LiDAR into the classification improved the results by 19% for both fall and summer. This is mainly due to the removal of shadow effect and the addition of elevation data to separate low and high vegetation.
Spatial Decision Support Systems
This book provides a comprehensive examination of the various aspects of SDSS evolution, components, architecture, and implementation. Integrating research from a variety of disciplines, it supplies a complete overview of SDSS technologies and their application.
Spatio-temporal cluster analysis of county-based human West Nile virus incidence in the continental United States
Background West Nile virus (WNV) is a vector-borne illness that can severely affect human health. After introduction on the East Coast in 1999, the virus quickly spread and became established across the continental United States. However, there have been significant variations in levels of human WNV incidence spatially and temporally. In order to quantify these variations, we used Kulldorff's spatial scan statistic and Anselin's Local Moran's I statistic to uncover spatial clustering of human WNV incidence at the county level in the continental United States from 2002–2008. These two methods were applied with varying analysis thresholds in order to evaluate sensitivity of clusters identified. Results The spatial scan and Local Moran's I statistics revealed several consistent, important clusters or hot-spots with significant year-to-year variation. In 2002, before the pathogen had spread throughout the country, there were significant regional clusters in the upper Midwest and in Louisiana and Mississippi. The largest and most consistent area of clustering throughout the study period was in the Northern Great Plains region including large portions of Nebraska, South Dakota, and North Dakota, and significant sections of Colorado, Wyoming, and Montana. In 2006, a very strong cluster centered in southwest Idaho was prominent. Both the spatial scan statistic and the Local Moran's I statistic were sensitive to the choice of input parameters. Conclusion Significant spatial clustering of human WNV incidence has been demonstrated in the continental United States from 2002–2008. The two techniques were not always consistent in the location and size of clusters identified. Although there was significant inter-annual variation, consistent areas of clustering, with the most persistent and evident being in the Northern Great Plains, were demonstrated. Given the wide variety of mosquito species responsible and the environmental conditions they require, further spatio-temporal clustering analyses on a regional level is warranted.
Landscape, demographic and climatic associations with human West Nile virus occurrence regionally in 2012 in the United States of America
After several years of low West Nile virus (WNV) occurrence in the United States of America (USA), 2012 witnessed large outbreaks in several parts of the country. In order to understand the outbreak dynamics, spatial clustering and landscape, demographic and climatic associations with WNV occurrence were investigated at a regional level in the USA. Previous research has demonstrated that there are a handful of prominent WNV mosquito vectors with varying ecological requirements responsible for WNV transmission in the USA. Published range maps of these important vectors were georeferenced and used to define eight functional ecological regions in the coterminous USA. The number of human WNV cases and human populations by county were attained in order to calculate a WNV rate for each county in 2012. Additionally, a binary value (high/low) was calculated for each county based on whether the county WNV rate was above or below the rate for the region it fell in. Global Moran's I and Anselin Local Moran's I statistics of spatial association were used per region to examine and visualize clustering of the WNV rate and the high/low rating. Spatial data on landscape, demographic and climatic variables were compiled and derived from a variety of sources and then investigated in relation to human WNV using both Spearman rho correlation coefficients and Poisson regression models. Findings demonstrated significant spatial clustering of WNV and substantial inter-regional differences in relationships between WNV occurrence and landscape, demographic and climatically related variables. The regional associations were consistent with the ecologies of the dominant vectors for those regions. The large outbreak in the Southeast region was preceded by higher than normal winter and spring precipitation followed by dry and hot conditions in the summer.
Parallel Landscape Driven Data Reduction & Spatial Interpolation Algorithm for Big LiDAR Data
Airborne Light Detection and Ranging (LiDAR) topographic data provide highly accurate digital terrain information, which is used widely in applications like creating flood insurance rate maps, forest and tree studies, coastal change mapping, soil and landscape classification, 3D urban modeling, river bank management, agricultural crop studies, etc. In this paper, we focus mainly on the use of LiDAR data in terrain modeling/Digital Elevation Model (DEM) generation. Technological advancements in building LiDAR sensors have enabled highly accurate and highly dense LiDAR point clouds, which have made possible high resolution modeling of terrain surfaces. However, high density data result in massive data volumes, which pose computing issues. Computational time required for dissemination, processing and storage of these data is directly proportional to the volume of the data. We describe a novel technique based on the slope map of the terrain, which addresses the challenging problem in the area of spatial data analysis, of reducing this dense LiDAR data without sacrificing its accuracy. To the best of our knowledge, this is the first ever landscape-driven data reduction algorithm. We also perform an empirical study, which shows that there is no significant loss in accuracy for the DEM generated from a 52% reduced LiDAR dataset generated by our algorithm, compared to the DEM generated from an original, complete LiDAR dataset. For the accuracy of our statistical analysis, we perform Root Mean Square Error (RMSE) comparing all of the grid points of the original DEM to the DEM generated by reduced data, instead of comparing a few random control points. Besides, our multi-core data reduction algorithm is highly scalable. We also describe a modified parallel Inverse Distance Weighted (IDW) spatial interpolation method and show that the DEMs it generates are time-efficient and have better accuracy than the one’s generated by the traditional IDW method.
Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries
The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixelto-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.
Ecological Niche Modeling of Potential West Nile Virus Vector Mosquito Species in Iowa
Ecological niche modeling (ENM) algorithms, Maximum Entropy Species Distribution Modeling (Maxent) and Genetic Algorithm for Rule-set Prediction (GARP), were used to develop models in Iowa for three species of mosquito — two significant, extant West Nile virus (WNV) vectors (Culex pipiens L and Culex tarsalis Coquillett (Diptera: Culicidae)), and the nuisance mosquito, Aedes vexans Meigen (Diptera: Culicidae), a potential WNV bridge vector. Occurrence data for the three mosquito species from a state-wide arbovirus surveillance program were used in combination with climatic and landscape layers. Maxent successfully created more appropriate niche models with greater accuracy than GARP. The three Maxent species' models were combined and the average values were statistically compared to human WNV incidence at the census block group level. The results showed that the Maxent-modeled species' niches averaged together were a useful indicator of WNV human incidence in the state of Iowa. This simple method for creating probability distribution maps proved useful for understanding WNV dynamics and could be applied to the study of other vector-borne diseases.
Web-based Spatial Decision Support Systems (WebSDSS): Evolution, Architecture, Examples and Challenges
Spatial Decision Support Systems (SDSS), which support spatial analysis and decision making, are currently receiving much attention. Research on SDSS originated from two distinct sources, namely, the GIS community and the DSS community. The synergy between these two research groups has lead to the adoption of state of the art technical solutions and the development of sophisticated SDSS that satisfy the needs of geographers and top-level decision makers. Recently, the Web has added a new dimension to SDSS and Web-based SDSS (WebSDSS) that are being developed in a number of application domains. This article provides an overview of the emergence of SDSS, its architecture and applications, and discusses some of the enabling technologies and research challenges for future SDSS development and deployment.