Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,686 result(s) for "Sule, A"
Sort by:
Role of Inflammatory Cytokines in COVID-19 Patients: A Review on Molecular Mechanisms, Immune Functions, Immunopathology and Immunomodulatory Drugs to Counter Cytokine Storm
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a severe pandemic of the current century. The vicious tentacles of the disease have been disseminated worldwide with unknown complications and repercussions. Advanced COVID-19 syndrome is characterized by the uncontrolled and elevated release of pro-inflammatory cytokines and suppressed immunity, leading to the cytokine storm. The uncontrolled and dysregulated secretion of inflammatory and pro-inflammatory cytokines is positively associated with the severity of the viral infection and mortality rate. The secretion of various pro-inflammatory cytokines such as TNF-α, IL-1, and IL-6 leads to a hyperinflammatory response by recruiting macrophages, T and B cells in the lung alveolar cells. Moreover, it has been hypothesized that immune cells such as macrophages recruit inflammatory monocytes in the alveolar cells and allow the production of large amounts of cytokines in the alveoli, leading to a hyperinflammatory response in severely ill patients with COVID-19. This cascade of events may lead to multiple organ failure, acute respiratory distress, or pneumonia. Although the disease has a higher survival rate than other chronic diseases, the incidence of complications in the geriatric population are considerably high, with more systemic complications. This review sheds light on the pivotal roles played by various inflammatory markers in COVID-19-related complications. Different molecular pathways, such as the activation of JAK and JAK/STAT signaling are crucial in the progression of cytokine storm; hence, various mechanisms, immunological pathways, and functions of cytokines and other inflammatory markers have been discussed. A thorough understanding of cytokines’ molecular pathways and their activation procedures will add more insight into understanding immunopathology and designing appropriate drugs, therapies, and control measures to counter COVID-19. Recently, anti-inflammatory drugs and several antiviral drugs have been reported as effective therapeutic drug candidates to control hypercytokinemia or cytokine storm. Hence, the present review also discussed prospective anti-inflammatory and relevant immunomodulatory drugs currently in various trial phases and their possible implications.
Viral Dynamics and Real-Time RT-PCR Ct Values Correlation with Disease Severity in COVID-19
Real-time RT-PCR is considered the gold standard confirmatory test for coronavirus disease 2019 (COVID-19). However, many scientists disagree, and it is essential to understand that several factors and variables can cause a false-negative test. In this context, cycle threshold (Ct) values are being utilized to diagnose or predict SARS-CoV-2 infection. This practice has a significant clinical utility as Ct values can be correlated with the viral load. In addition, Ct values have a strong correlation with multiple haematological and biochemical markers. However, it is essential to consider that Ct values might be affected by pre-analytic, analytic, and post-analytical variables such as collection technique, specimen type, sampling time, viral kinetics, transport and storage conditions, nucleic acid extraction, viral RNA load, primer designing, real-time PCR efficiency, and Ct value determination method. Therefore, understanding the interpretation of Ct values and other influential factors could play a crucial role in interpreting viral load and disease severity. In several clinical studies consisting of small or large sample sizes, several discrepancies exist regarding a significant positive correlation between the Ct value and disease severity in COVID-19. In this context, a revised review of the literature has been conducted to fill the knowledge gaps regarding the correlations between Ct values and severity/fatality rates of patients with COVID-19. Various databases such as PubMed, Science Direct, Medline, Scopus, and Google Scholar were searched up to April 2021 by using keywords including “RT-PCR or viral load”, “SARS-CoV-2 and RT-PCR”, “Ct value and viral load”, “Ct value or COVID-19”. Research articles were extracted and selected independently by the authors and included in the present review based on their relevance to the study. The current narrative review explores the correlation of Ct values with mortality, disease progression, severity, and infectivity. We also discuss the factors that can affect these values, such as collection technique, type of swab, sampling method, etc.
Determinants of health-related quality of life among human immunodeficiency virus positive (HIV-positive) patients at Ahmadu Bello University teaching hospital, Zaria, Nigeria- 2015
Background The advent of Highly Active Antiretroviral Therapy (HAART) is associated with improved clinical and laboratory outcomes resulting in prolonged life and well-being of people living with Human Immunodeficiency Virus (PLHIV). However, the needs for life-long therapy, medications’ side effects and stigma have raised concerns about their quality of life (QOL). This study assessed the determinants of Health-related quality of life (HRQOL) among HIV-positive patients at Ahmadu Bello University Teaching Hospital (ABUTH) Zaria. Methods We conducted a cross-sectional study of 353 HIV-positive adults on HAART attending the HIV clinic of ABUTH, Zaria. The participants were recruited into the study using a systematic sampling technique. Data on socio-demographics, medical parameters, QOL and family functionality were collected using structured, interviewer-administered questionnaire. The World Health Organization (WHO) Quality of Life HIV short form instrument (WHOQOL-HIV BREF) item and Family APGAR tool were respectively used in assessing the QOL and family functionality of the participants. We performed univariate, bivariate and multivariate analysis. Results Mean age was 39.1(±10.9) years, 239 (67.7%) were females, 208 (58.9%) were Hausa-Fulani, 240 (68.2%) married and up to 210 (59.4%) had at least a secondary education. The overall mean scores on the scale of 4–20 for HRQOL were similar in three domains: environment domain 14.5(±2.8); social relationship 14.4(±3.1) and level of independence 14.4(±2.5). Lower scores were recorded in spirituality/religion/personal beliefs 12.3(±4.3). Identified determinants of HRQOL were spousal HIV- positive status (AOR = 3.37; CI; 1.46–7.74) and high family function (AOR = 2.57; CI: 1.51–4.39). Conclusion Having highly functional family and having HIV-positive partner were the major determinants of HRQOL. Routine family counselling and strengthening the HIV social-support network should be incorporated into the routine patients’ care in HIV treatment centers.
Interpreting COVID-19 deaths among nursing home residents in the US: The changing role of facility quality over time
A report published last year by the Centers for Medicare & Medicaid Services (CMS) highlighted that COVID-19 case counts are more likely to be high in lower quality nursing homes than in higher quality ones. Since then, multiple studies have examined this association with a handful also exploring the role of facility quality in explaining resident deaths from the virus. Despite this wide interest, no previous study has investigated how the relation between quality and COVID-19 mortality among nursing home residents may have changed, if at all, over the progression of the pandemic. This understanding is indeed lacking given that prior studies are either cross-sectional or are analyses limited to one specific state or region of the country. To address this gap, we analyzed changes in nursing home resident deaths across the US between June 1, 2020 and January 31, 2021 (n = 12,415 nursing homes X 8 months) using both descriptive and multivariable statistics. We merged publicly available data from multiple federal agencies with mortality rate (per 100,000 residents) as the outcome and CMS 5-star quality rating as the primary explanatory variable of interest. Covariates, based on the prior literature, consisted of both facility- and community-level characteristics. Findings from our secondary analysis provide robust evidence of the association between nursing home quality and resident deaths due to the virus diminishing over time. In connection, we discuss plausible reasons, especially duration of staff shortages, that over time might have played a critical role in driving the quality-mortality convergence across nursing homes in the US.
Venous thromboembolism in COVID-19 patients and prediction model: a multicenter cohort study
Background Patients with COVID-19 infection are commonly reported to have an increased risk of venous thrombosis. The choice of anti-thrombotic agents and doses are currently being studied in randomized controlled trials and retrospective studies. There exists a need for individualized risk stratification of venous thromboembolism (VTE) to assist clinicians in decision-making on anticoagulation. We sought to identify the risk factors of VTE in COVID-19 patients, which could help physicians in the prevention, early identification, and management of VTE in hospitalized COVID-19 patients and improve clinical outcomes in these patients. Method This is a multicenter, retrospective database of four main health systems in Southeast Michigan, United States. We compiled comprehensive data for adult COVID-19 patients who were admitted between 1st March 2020 and 31st December 2020. Four models, including the random forest, multiple logistic regression, multilinear regression, and decision trees, were built on the primary outcome of in-hospital acute deep vein thrombosis (DVT) and pulmonary embolism (PE) and tested for performance. The study also reported hospital length of stay (LOS) and intensive care unit (ICU) LOS in the VTE and the non-VTE patients. Four models were assessed using the area under the receiver operating characteristic curve and confusion matrix. Results The cohort included 3531 admissions, 3526 had discharge diagnoses, and 6.68% of patients developed acute VTE (N = 236). VTE group had a longer hospital and ICU LOS than the non-VTE group (hospital LOS 12.2 days vs. 8.8 days, p < 0.001; ICU LOS 3.8 days vs. 1.9 days, p < 0.001). 9.8% of patients in the VTE group required more advanced oxygen support, compared to 2.7% of patients in the non-VTE group (p < 0.001). Among all four models, the random forest model had the best performance. The model suggested that blood pressure, electrolytes, renal function, hepatic enzymes, and inflammatory markers were predictors for in-hospital VTE in COVID-19 patients. Conclusions Patients with COVID-19 have a high risk for VTE, and patients who developed VTE had a prolonged hospital and ICU stay. This random forest prediction model for VTE in COVID-19 patients identifies predictors which could aid physicians in making a clinical judgment on empirical dosages of anticoagulation.
Artificial intelligence guided screening for cardiomyopathies in an obstetric population: a pragmatic randomized clinical trial
Nigeria has the highest reported incidence of peripartum cardiomyopathy worldwide. This open-label, pragmatic clinical trial randomized pregnant and postpartum women to usual care or artificial intelligence (AI)-guided screening to assess its impact on the diagnosis left ventricular systolic dysfunction (LVSD) in the perinatal period. The study intervention included digital stethoscope recordings with point of-care AI predictions and a 12-lead electrocardiogram with asynchronous AI predictions for LVSD. The primary end point was identification of LVSD during the study period. In the intervention arm, the primary end point was defined as the number of identified participants with LVSD as determined by a positive AI screen, confirmed by echocardiography. In the control arm, this was the number of participants with clinical recognition and documentation of LVSD on echocardiography in keeping with current standard of care. Participants in the intervention arm had a confirmatory echocardiogram at baseline for AI model validation. A total of 1,232 (616 in each arm) participants were randomized and 1,195 participants (587 intervention arm and 608 control arm) completed the baseline visit at 6 hospitals in Nigeria between August 2022 and September 2023 with follow-up through May 2024. Using the AI-enabled digital stethoscope, the primary study end point was met with detection of 24 out of 587 (4.1%) versus 12 out of 608 (2.0%) patients with LVSD (intervention versus control odds ratio 2.12, 95% CI 1.05–4.27; P  = 0.032). With the 12-lead AI-electrocardiogram model, the primary end point was detected in 20 out of 587 (3.4%) versus 12 out of 608 (2.0%) patients (odds ratio 1.75, 95% CI 0.85–3.62; P  = 0.125). A similar direction of effect was observed in prespecified subgroup analysis. There were no serious adverse events related to study participation. In pregnant and postpartum women, AI-guided screening using a digital stethoscope improved the diagnosis of pregnancy-related cardiomyopathy. ClinicalTrials.gov registration: NCT05438576 In this pragmatic, randomized clinical trial involving 1,196 pregnant and postpartum women from 6 hospitals in Nigeria, AI-based electrocardiogram screening proved accurate in detecting cardiomyopathies and suggests that it could improve detection of these conditions.
SARS-COV-ATE risk assessment model for arterial thromboembolism in COVID-19
Patients with SARS-CoV-2 infection are at an increased risk of cardiovascular and thrombotic complications conferring an extremely poor prognosis. COVID-19 infection is known to be an independent risk factor for acute ischemic stroke and myocardial infarction (MI). We developed a risk assessment model (RAM) to stratify hospitalized COVID-19 patients for arterial thromboembolism (ATE). This multicenter, retrospective study included adult COVID-19 patients admitted between 3/1/2020 and 9/5/2021. Among 3531 patients from the training cohort, 15.5% developed acute in-hospital ATE, including stroke, MI, and other ATE, compared to 13.4% in the validation cohort. The 16-item final score was named SARS-COV-ATE (Sex: male = 1, Age [40–59 = 2, > 60 = 4], Race: non-African American = 1, Smoking = 1 and Systolic blood pressure elevation = 1, Creatinine elevation = 1; Over the range: leukocytes/lactate dehydrogenase/interleukin-6, B-type natriuretic peptide = 1, Vascular disease (cardiovascular/cerebrovascular = 1), Aspartate aminotransferase = 1, Troponin-I [> 0.04 ng/mL = 1, troponin-I > 0.09 ng/mL = 3], Electrolytes derangement [magnesium/potassium = 1]). RAM had a good discrimination (training AUC 0.777, 0.756–0.797; validation AUC 0.766, 0.741–0.790). The validation cohort was stratified as low-risk (score 0–8), intermediate-risk (score 9–13), and high-risk groups (score ≥ 14), with the incidence of ATE 2.4%, 12.8%, and 33.8%, respectively. Our novel prediction model based on 16 standardized, commonly available parameters showed good performance in identifying COVID-19 patients at risk for ATE on admission.
Intranasal oxytocin enhances intrinsic corticostriatal functional connectivity in women
Oxytocin may influence various human behaviors and the connectivity across subcortical and cortical networks. Previous oxytocin studies are male biased and often constrained by task-based inferences. Here, we investigate the impact of oxytocin on resting-state connectivity between subcortical and cortical networks in women. We collected resting-state functional magnetic resonance imaging (fMRI) data on 26 typically developing women 40 min following intranasal oxytocin administration using a double-blind placebo-controlled crossover design. Independent components analysis (ICA) was applied to examine connectivity between networks. An independent analysis of oxytocin receptor ( OXTR ) gene expression in human subcortical and cortical areas was carried out to determine plausibility of direct oxytocin effects on OXTR . In women, OXTR was highly expressed in striatal and other subcortical regions, but showed modest expression in cortical areas. Oxytocin increased connectivity between corticostriatal circuitry typically involved in reward, emotion, social communication, language and pain processing. This effect was 1.39 standard deviations above the null effect of no difference between oxytocin and placebo. This oxytocin-related effect on corticostriatal connectivity covaried with autistic traits, such that oxytocin-related increase in connectivity was stronger in individuals with higher autistic traits. In sum, oxytocin strengthened corticostriatal connectivity in women, particularly with cortical networks that are involved in social-communicative, motivational and affective processes. This effect may be important for future work on neurological and psychiatric conditions (for example, autism), particularly through highlighting how oxytocin may operate differently for subsets of individuals.
Oxytocin increases eye contact during a real-time, naturalistic social interaction in males with and without autism
Autism spectrum conditions (autism) affect ~1% of the population and are characterized by deficits in social communication. Oxytocin has been widely reported to affect social-communicative function and its neural underpinnings. Here we report the first evidence that intranasal oxytocin administration improves a core problem that individuals with autism have in using eye contact appropriately in real-world social settings. A randomized double-blind, placebo-controlled, within-subjects design is used to examine how intranasal administration of 24 IU of oxytocin affects gaze behavior for 32 adult males with autism and 34 controls in a real-time interaction with a researcher. This interactive paradigm bypasses many of the limitations encountered with conventional static or computer-based stimuli. Eye movements are recorded using eye tracking, providing an objective measurement of looking patterns. The measure is shown to be sensitive to the reduced eye contact commonly reported in autism, with the autism group spending less time looking to the eye region of the face than controls. Oxytocin administration selectively enhanced gaze to the eyes in both the autism and control groups (transformed mean eye-fixation difference per second=0.082; 95% CI:0.025–0.14, P =0.006). Within the autism group, oxytocin has the most effect on fixation duration in individuals with impaired levels of eye contact at baseline (Cohen’s d =0.86). These findings demonstrate that the potential benefits of oxytocin in autism extend to a real-time interaction, providing evidence of a therapeutic effect in a key aspect of social communication.
Diverse Immunological Factors Influencing Pathogenesis in Patients with COVID-19: A Review on Viral Dissemination, Immunotherapeutic Options to Counter Cytokine Storm and Inflammatory Responses
The pathogenesis of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still not fully unraveled. Though preventive vaccines and treatment methods are out on the market, a specific cure for the disease has not been discovered. Recent investigations and research studies primarily focus on the immunopathology of the disease. A healthy immune system responds immediately after viral entry, causing immediate viral annihilation and recovery. However, an impaired immune system causes extensive systemic damage due to an unregulated immune response characterized by the hypersecretion of chemokines and cytokines. The elevated levels of cytokine or hypercytokinemia leads to acute respiratory distress syndrome (ARDS) along with multiple organ damage. Moreover, the immune response against SARS-CoV-2 has been linked with race, gender, and age; hence, this viral infection’s outcome differs among the patients. Many therapeutic strategies focusing on immunomodulation have been tested out to assuage the cytokine storm in patients with severe COVID-19. A thorough understanding of the diverse signaling pathways triggered by the SARS-CoV-2 virus is essential before contemplating relief measures. This present review explains the interrelationships of hyperinflammatory response or cytokine storm with organ damage and the disease severity. Furthermore, we have thrown light on the diverse mechanisms and risk factors that influence pathogenesis and the molecular pathways that lead to severe SARS-CoV-2 infection and multiple organ damage. Recognition of altered pathways of a dysregulated immune system can be a loophole to identify potential target markers. Identifying biomarkers in the dysregulated pathway can aid in better clinical management for patients with severe COVID-19 disease. A special focus has also been given to potent inhibitors of proinflammatory cytokines, immunomodulatory and immunotherapeutic options to ameliorate cytokine storm and inflammatory responses in patients affected with COVID-19.