Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
32 result(s) for "Sulser, Timothy B."
Sort by:
Risk of increased food insecurity under stringent global climate change mitigation policy
Food insecurity can be directly exacerbated by climate change due to crop-production-related impacts of warmer and drier conditions that are expected in important agricultural regions1–3. However, efforts to mitigate climate change through comprehensive, economy-wide GHG emissions reductions may also negatively affect food security, due to indirect impacts on prices and supplies of key agricultural commodities4–6. Here we conduct a multiple model assessment on the combined effects of climate change and climate mitigation efforts on agricultural commodity prices, dietary energy availability and the population at risk of hunger. A robust finding is that by 2050, stringent climate mitigation policy, if implemented evenly across all sectors and regions, would have a greater negative impact on global hunger and food consumption than the direct impacts of climate change. The negative impacts would be most prevalent in vulnerable, low-income regions such as sub-Saharan Africa and South Asia, where food security problems are already acute.
The future of fish in Africa: Employment and investment opportunities
One of the most pressing challenges facing food systems in Africa is ensuring availability of a healthy and sustainable diet to 2.4 billion people by 2050. The continent has struggled with development challenges, particularly chronic food insecurity and pervasive poverty. In Africa’s food systems, fish and other aquatic foods play a multifaceted role in generating income, and providing a critical source of essential micronutrients. To date, there are no estimates of investment and potential returns for domestic fish production in Africa. To contribute to policy debates about the future of fish in Africa, we applied the International Model for Policy Analysis of Agriculture Commodities and Trade (IMPACT) to explore two Pan-African scenarios for fish sector growth: a business-as-usual ( BAU ) scenario and a high-growth scenario for capture fisheries and aquaculture with accompanying strong gross domestic product growth ( HIGH ). Post-model analysis was used to estimate employment and aquaculture investment requirements for the sector in Africa. Africa’s fish sector is estimated to support 20.7 million jobs in 2030, and 21.6 million by 2050 under the BAU . Approximately 2.6 people will be employed indirectly along fisheries and aquaculture value chains for every person directly employed in the fish production stage. Under the HIGH scenario, total employment in Africa’s fish food system will reach 58.0 million jobs, representing 2.4% of total projected population in Africa by 2050. Aquaculture production value is estimated to achieve US $ 3.3 billion and US$20.4 billion per year under the BAU and HIGH scenarios by 2050, respectively. Farm-gate investment costs for the three key inputs (fish feeds, farm labor, and fish seed) to achieve the aquaculture volumes projected by 2050 are estimated at US $ 1.8 billion per year under the BAU and US$11.6 billion per year under the HIGH scenario. Sustained investments are critical to sustain capture fisheries and support aquaculture growth for food system transformation towards healthier diets.
Modeling impacts of faster productivity growth to inform the CGIAR initiative on Crops to End Hunger
In 2017–2018, a group of international development funding agencies launched the Crops to End Hunger initiative to modernize public plant breeding in lower-income countries. To inform that initiative, USAID asked the International Food Policy Research Institute and the United States Department of Agriculture’s Economic Research Service to estimate the impacts of faster productivity growth for 20 food crops on income and other indicators in 106 countries in developing regions in 2030. We first estimated the value of production in 2015 for each crop using data from FAO. We then used the IMPACT and GLOBE economic models to estimate changes in the value of production and changes in economy-wide income under scenarios of faster crop productivity growth, assuming that increased investment will raise annual rates of yield growth by 25% above baseline growth rates over the period 2015–2030. We found that faster productivity growth in rice, wheat and maize increased economy-wide income in the selected countries in 2030 by 59 billion USD, 27 billion USD and 21 billion USD respectively, followed by banana and yams with increases of 9 billion USD each. While these amounts represent small shares of total GDP, they are 2–15 times current public R&D spending on food crops in developing countries. Income increased most in South Asia and Sub-Saharan Africa. Faster productivity growth in rice and wheat reduced the population at risk of hunger by 11 million people and 6 million people respectively, followed by plantain and cassava with reductions of about 2 million people each. Changes in adequacy ratios were relatively large for carbohydrates (already in surplus) and relatively small for micronutrients. In general, we found that impacts of faster productivity growth vary widely across crops, regions and outcome indicators, highlighting the importance of identifying the potentially diverse objectives of different decision makers and recognizing possible tradeoffs between objectives.
Climate analogs can catalyze cross-regional dialogs for US specialty crop adaptation
Communication theory suggests that interactive dialog rather than information transmission is necessary for climate change action, especially for complex systems like agriculture. Climate analogs—locations whose current climate is similar to a target location’s future climate—have garnered recent interest as transmitting more relatable information; however, they have unexplored potential in facilitating meaningful dialogs, and whether the way the analogs are developed could make a difference. We developed climate context-specific analogs based on agriculturally-relevant climate metrics for US specialty crop production, and explored their potential for facilitating dialogs on climate adaptation options. Over 80% of US specialty crop counties had acceptable US analogs for the mid-twenty-first century, especially in the West and Northeast which had greater similarities in the crops produced across target-analog pairs. Western counties generally had analogs to the south, and those in other regions had them to the west. A pilot dialog of target-analog pairs showed promise in eliciting actionable adaptation insights, indicating potential value in incorporating analog-driven dialogs more broadly in climate change communication.
Linking ecosystem services provisioning with demand for animal-sourced food: an integrated modeling study for Tanzania
Standard tools that can quantitatively track the impacts of higher global demand for animal-sourced food to their local environmental effects in developing countries are largely missing. This paper presents a novel integrated assessment framework that links a model of the global agricultural and food system, a landscape-level environmental impact assessment model, and an ecosystem services simulation model. For Tanzania, this integrated assessment showed that a projected increase in the demand and production of foods of livestock origin with optimistic economic growth between 2010 and 2030 leads to an improvement in food security. However, resulting transitions in land use impact negatively on the future provisioning of ecosystem services, increasing phosphorus, nitrogen, and sediment in runoff and reducing water quality in areas downstream of the agricultural expansion. Losses in ecosystem services are lowest when diversified farming practices are adopted in areas of agricultural land expansion. The role of land management in the environmental impacts of expanded livestock production is highlighted, as is the need for a new generation of analytical tools to inform policy recommendations.
Pollinator Deficits, Food Consumption, and Consequences for Human Health: A Modeling Study
Animal pollination supports agricultural production for many healthy foods, such as fruits, vegetables, nuts, and legumes, that provide key nutrients and protect against noncommunicable disease. Today, most crops receive suboptimal pollination because of limited abundance and diversity of pollinating insects. Animal pollinators are currently suffering owing to a host of direct and indirect anthropogenic pressures: land-use change, intensive farming techniques, harmful pesticides, nutritional stress, and climate change, among others. We aimed to model the impacts on current global human health from insufficient pollination via diet. We used a climate zonation approach to estimate current yield gaps for animal-pollinated foods and estimated the proportion of the gap attributable to insufficient pollinators based on existing research. We then simulated closing the \"pollinator yield gaps\" by eliminating the portion of total yield gaps attributable to insufficient pollination. Next, we used an agriculture-economic model to estimate the impacts of closing the pollinator yield gap on food production, interregional trade, and consumption. Finally, we used a comparative risk assessment to estimate the related changes in dietary risks and mortality by country and globally. In addition, we estimated the lost economic value of crop production for three diverse case-study countries: Honduras, Nepal, and Nigeria. Globally, we calculated that 3%-5% of fruit, vegetable, and nut production is lost due to inadequate pollination, leading to an estimated 427,000 (95% uncertainty interval: 86,000, 691,000) excess deaths annually from lost healthy food consumption and associated diseases. Modeled impacts were unevenly distributed: Lost food production was concentrated in lower-income countries, whereas impacts on food consumption and mortality attributable to insufficient pollination were greater in middle- and high-income countries with higher rates of noncommunicable disease. Furthermore, in our three case-study countries, we calculated the economic value of crop production to be 12%-31% lower than if pollinators were abundant (due to crop production losses of 3%-19%), mainly due to lost fruit and vegetable production. According to our analysis, insufficient populations of pollinators were responsible for large present-day burdens of disease through lost healthy food consumption. In addition, we calculated that low-income countries lost significant income and crop yields from pollinator deficits. These results underscore the urgent need to promote pollinator-friendly practices for both human health and agricultural livelihoods. https://doi.org/10.1289/EHP10947.
Benefit–Cost Analysis of Increased Funding for Agricultural Research and Development in the Global South
This paper conducts a benefit–cost analysis of expanding agricultural research and development (R&D) in the Global South. We extend a recent modeling exercise that used IFPRI’s IMPACT model to estimate the investments required to reduce the global prevalence of hunger below 5%. After 35 years, the increased funding is estimated to increase agricultural output by 10%, reduce the prevalence of hunger by 35%, reduce food prices by 16%, and increase per capita incomes by 4% relative to a counterfactual where funding continues to rise on historical trends. Using an 8% discount rate, the net present value of the costs of agricultural R&D are estimated at $61 billion for the next 35 years, while the net present benefits in terms of net economic surplus (the sum of consumer and producer surplus) are estimated at $2.1 trillion. The central estimate of the benefit–cost ratio (BCR) is 33, consistent with previous research documenting high average returns to agricultural research and development. The central BCR reported in this study places the intervention at the 91st percentile of all previous Copenhagen Consensus BCRs in agriculture, and 87th percentile for all BCRs regardless of sector. Agricultural R&D is likely one of the best uses of resources for the remainder of the Sustainable Development Goals and decades beyond.