Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
165 result(s) for "Sumaila, U. Rashid"
Sort by:
Blue food demand across geographic and temporal scales
Numerous studies have focused on the need to expand production of ‘blue foods’, defined as aquatic foods captured or cultivated in marine and freshwater systems, to meet rising population- and income-driven demand. Here we analyze the roles of economic, demographic, and geographic factors and preferences in shaping blue food demand, using secondary data from FAO and The World Bank, parameters from published models, and case studies at national to sub-national scales. Our results show a weak cross-sectional relationship between per capita income and consumption globally when using an aggregate fish metric. Disaggregation by fish species group reveals distinct geographic patterns; for example, high consumption of freshwater fish in China and pelagic fish in Ghana and Peru where these fish are widely available, affordable, and traditionally eaten. We project a near doubling of global fish demand by mid-century assuming continued growth in aquaculture production and constant real prices for fish. Our study concludes that nutritional and environmental consequences of rising demand will depend on substitution among fish groups and other animal source foods in national diets. Global demand for “blue food” is growing. In this quantitative synthesis, the authors analyse global seafood demand and project trends to 2050, finding considerable regional variation in the relationship between wealth and consumption.
End Overfishing and Increase the Resilience of the Ocean to Climate Change
Abstract Marine fish stocks and the ecosystems they inhabit are in decline in many parts of our ocean, including in some European waters, because of overfishing and the ecosystem effect of fishing in general. Simultaneously, climate change is disrupting the physics, chemistry and ecology of the ocean, with significant consequences on the life it holds. While the positive effects of mitigating climate change on the ocean and marine life are currently being documented, papers that examine how ending overfishing could increase ocean resilience to climate change are less common. The goal of this paper is to review the current literature and conduct an analysis that demonstrate that ending overfishing and reducing other negative ecosystem effects of fishing would make fish stocks and marine ecosystems more resilient to climate change. Our findings suggest that fish and fish stocks are no different from other living organisms and are more likely to survive external pressures when healthy.
Financing a sustainable ocean economy
The ocean, which regulates climate and supports vital ecosystem services, is crucial to our Earth system and livelihoods. Yet, it is threatened by anthropogenic pressures and climate change. A healthy ocean that supports a sustainable ocean economy requires adequate financing vehicles that generate, invest, align, and account for financial capital to achieve sustained ocean health and governance. However, the current finance gap is large; we identify key barriers to financing a sustainable ocean economy and suggest how to mitigate them, to incentivize the kind of public and private investments needed for topnotch science and management in support of a sustainable ocean economy. The ocean supports many livelihoods, but this is currently not sustainable with pressures on the climate and ecosystems. Here, in this perspective, the authors outline the barriers and solutions for financing a sustainable ocean economy.
Deep-sea mining and its risks for social-ecological systems : insights from simulation-based analyses
The pros and cons of deep-sea mining (DSM) is currently hotly debated. Here, we assess the environmental, economic, and social risks of DSM by comparing scenarios with and without DSM involvement. The “Without” scenario relies solely on land-based mining and circular economy solutions, while the “With” scenario incorporates DSM alongside circular strategies, highlighting the dangers of heavy DSM dependence. Through literature review and expert interviews, our study identifies key risk indicators across environmental, economic, and social dimensions, forming a comprehensive assessment framework. Through the application of qualitative data and fuzzy cognitive mapping, the analysis reveals that environmental factors are the most influential (centrality: 1.46), followed by social (1.32) and economic (1.0) factors. In the “With DSM” scenario, all indicators show increased risks, with environmental factors, particularly “coastal state vulnerability,” experiencing a 13% rise. Social risks, including “violation of law,” “participatory rights,” “lack of effective control,” and “degraded reputation,” increase by 8–11%, while economic risks, such as “contractual violations,” “lack of special provision,” “knowledge gap on economic assistance fund” and disputes among “multiple stakeholders,” see an 11% uptick. Our results suggest that the risks DSM poses to deep-sea marine ecosystems are likely too significant to justify its pursuit and advocates for circular economy solutions as viable alternatives to mitigate environmental, social, and economic risks. We recommend that policies should promote circular practices through resource recovery incentives.
Projected change in global fisheries revenues under climate change
Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO 2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries’ vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries.
Valuing invisible catches: Estimating the global contribution by women to small-scale marine capture fisheries production
The role that women play in fisheries around the world is receiving increasing international attention yet the contributions by women to fisheries catches continues to be overlooked by society, industry and policy makers. Here, we address this lack of visibility with a global estimation of small-scale fisheries catches by women. Our estimates reveal that women participate in small-scale fishing activities in all regions of the world, with approximately 2.1 million (± 86,000) women accounting for roughly 11% (± 4%) of participants in small-scale fishing activities, i.e., catching roughly 2.9 million (± 835,000) tonnes per year of marine fish and invertebrates. The landed value of the catch by women is estimated at USD 5.6 billion (± 1.5 billion), with an economic impact of USD 14.8 billion per year (± 4 billion), which is equivalent to 25.6 billion real 2010 dollars (± 7.2 billion). These catches are mostly taken along the shoreline, on foot, or from small, non-motorized vessels using low-technology, low-emission gears in coastal waters. Catches taken by women are often for home consumption, and thus considered part of the subsistence sub-sector. However, in many contexts, women also sell a portion of their catch, generating income for themselves and their families. These findings underscore the significant role of women as direct producers in small-scale fisheries value chains, making visible contributions by women to food and livelihood security, globally.
A Global Estimate of the Number of Coral Reef Fishers
Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale.
Projected amplification of food web bioaccumulation of MeHg and PCBs under climate change in the Northeastern Pacific
Climate change increases exposure and bioaccumulation of pollutants in marine organisms, posing substantial ecophysiological and ecotoxicological risks. Here, we applied a trophodynamic ecosystem model to examine the bioaccumulation of organic mercury (MeHg) and polychlorinated biphenyls (PCBs) in a Northeastern Pacific marine food web under climate change. We found largely heterogeneous sensitivity in climate-pollution impacts between chemicals and trophic groups. Concentration of MeHg and PCBs in top predators, including resident killer whales, is projected to be amplified by 8 and 3%, respectively, by 2100 under a high carbon emission scenario (Representative Concentration Pathway 8.5) relative to a no-climate change control scenario. However, the level of amplification increases with higher carbon emission scenario for MeHg, but decreases for PCBs. Such idiosyncratic responses are shaped by the differences in bioaccumulation pathways between MeHg and PCBs, and the modifications of food web dynamics between different levels of climate change. Climate-induced pollutant amplification in mid-trophic level predators (Chinook salmon) are projected to be higher (~10%) than killer whales. Overall, the predicted trophic magnification factor is ten-fold higher in MeHg than in PCBs under high CO 2 emissions. This contribution highlights the importance of understanding the interactions with anthropogenic organic pollutants in assessing climate risks on marine ecosystems.
Conservation successes and challenges for wide-ranging sharks and rays
Overfishing is the most significant threat facing sharks and rays. Given the growth in consumption of seafood, combined with the compounding effects of habitat loss, climate change, and pollution, there is a need to identify recovery paths, particularly in poorly managed and poorly monitored fisheries. Here, we document conservation through fisheries management success for 11 coastal sharks in US waters by comparing population trends through a Bayesian state-space model before and after the implementation of the 1993 Fisheries Management Plan for Sharks. We took advantage of the spatial and temporal gradients in fishing exposure and fisheries management in the Western Atlantic to analyze the effect on the Red List status of all 26 wide-ranging coastal sharks and rays. We show that extinction risk was greater where fishing pressure was higher, but this was offset by the strength of management engagement (indicated by strength of National and Regional Plan of Action for sharks and rays). The regional Red List Index (which tracks changes in extinction risk through time) declined in all regions until the 1980s but then improved in the North and Central Atlantic such that the average extinction risk is currently half that in the Southwest. Many sharks and rays are wide ranging, and successful fisheries management in one country can be undone by poorly regulated or unregulated fishing elsewhere. Our study underscores that well-enforced, science-based management of carefully monitored fisheries can achieve conservation success, even for slow-growing species.
Global economic value of shark ecotourism: implications for conservation
Amid declining shark populations because of overfishing, a burgeoning shark watching industry, already well established in some locations, generates benefits from shark protection. We compile reported economic benefits at shark watching locations and use a meta-analytical approach to estimate benefits at sites without available data. Results suggest that, globally, c. 590,000 shark watchers expend > USD 314 million per year, directly supporting 10,000 jobs. By comparison, the landed value of global shark fisheries is currently c. USD 630 million and has been in decline for most of the past decade. Based on current observed trends, numbers of shark watchers could more than double within the next 20 years, generating > USD 780 million in tourist expenditures around the world. This supports optimistic projections at new sites, including those in an increasing number of shark sanctuaries established primarily for shark conservation and enacted in recognition of the ecological and economic importance of living sharks.