Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
8
result(s) for
"Summerhill, Volha I."
Sort by:
Sex-Specific Features of Calcific Aortic Valve Disease
by
Myasoedova, Veronika A.
,
Orekhov, Alexander N.
,
Summerhill, Volha I.
in
Animals
,
Aortic Valve - pathology
,
Aortic Valve Stenosis - epidemiology
2020
Calcific aortic valve disease (CAVD) is the most common valvular heart disease in developed countries predominantly affecting the elderly population therefore posing a large economic burden. It is a gradually progressive condition ranging from mild valve calcification and thickening, without the hemodynamic obstruction, to severe calcification impairing leaflet motion, known as aortic stenosis (AS). The progression of CAVD occurs over many years, and it is extremely variable among individuals. It is also associated with an increased risk of coronary events and mortality. The recent insights into the CAVD pathophysiology included an important role of sex. Accumulating evidence suggests that, in patients with CAVD, sex can determine important differences in the relationship between valvular calcification process, fibrosis, and aortic stenosis hemodynamic severity between men and women. Consequently, it has implications on the development of different valvular phenotypes, left ventricular hypertrophy, and cardiovascular outcomes in men and women. Along these lines, taking into account the sex-related differences in diagnosis, prognosis, and treatment outcomes is of profound importance. In this review, the sex-related differences in patients with CAVD, in terms of pathobiology, clinical phenotypes, and outcomes were discussed.
Journal Article
The Atherogenic Role of Circulating Modified Lipids in Atherosclerosis
by
Grechko, Andrey V.
,
Yet, Shaw-Fang
,
Orekhov, Alexander N.
in
Animals
,
Antigen-Antibody Complex - blood
,
Antigen-Antibody Complex - metabolism
2019
Lipid accumulation in the arterial wall is a crucial event in the development of atherosclerotic lesions. Circulating low-density lipoprotein (LDL) is the major source of lipids that accumulate in the atherosclerotic plaques. It was discovered that not all LDL is atherogenic. In the blood plasma of atherosclerotic patients, LDL particles are the subject of multiple enzymatic and non-enzymatic modifications that determine their atherogenicity. Desialylation is the primary and the most important atherogenic LDL modification followed by a cascade of other modifications that also increase blood atherogenicity. The enzyme trans-sialidase is responsible for the desialylation of LDL, therefore, its activity plays an important role in atherosclerosis development. Moreover, circulating modified LDL is associated with immune complexes that also have a strong atherogenic potential. Moreover, it was shown that antibodies to modified LDL are also atherogenic. The properties of modified LDL were described, and the strong evidence indicating that it is capable of inducing intracellular accumulation of lipids was presented. The accumulated evidence indicated that the molecular properties of modified LDL, including LDL-containing immune complexes can serve as the prognostic/diagnostic biomarkers and molecular targets for the development of anti-atherosclerotic drugs.
Journal Article
Potential use of antioxidants for the treatment of chronic inflammatory diseases
by
Postnov, Anton Y.
,
Orekhov, Alexander N.
,
Blagov, Alexander V.
in
Alzheimer's disease
,
Anti-inflammatory agents
,
Antioxidants
2024
The excessive production of various reactive oxidant species over endogenous antioxidant defense mechanisms leads to the development of a state of oxidative stress, with serious biological consequences. The consequences of oxidative stress depend on the balance between the generation of reactive oxidant species and the antioxidant defense and include oxidative damage of biomolecules, disruption of signal transduction, mutation, and cell apoptosis. Accumulating evidence suggests that oxidative stress is involved in the physiopathology of various debilitating illnesses associated with chronic inflammation, including cardiovascular diseases, diabetes, cancer, or neurodegenerative processes, that need continuous pharmacological treatment. Oxidative stress and chronic inflammation are tightly linked pathophysiological processes, one of which can be simply promoted by another. Although, many antioxidant trials have been unsuccessful (some of the trials showed either no effect or even harmful effects) in human patients as a preventive or curative measure, targeting oxidative stress remains an interesting therapeutic approach for the development of new agents to design novel anti-inflammatory drugs with a reliable safety profile. In this regard, several natural antioxidant compounds were explored as potential therapeutic options for the treatment of chronic inflammatory diseases. Several metalloenzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, are among the essential enzymes that maintain the low nanomolar physiological concentrations of superoxide (O 2 •−) and hydrogen peroxide (H 2 O 2 ), the major redox signaling molecules, and thus play important roles in the alteration of the redox homeostasis. These enzymes have become a striking source of motivation to design catalytic drugs to enhance the action of these enzymes under pathological conditions related to chronic inflammation. This review is focused on several major representatives of natural and synthetic antioxidants as potential drug candidates for the treatment of chronic inflammatory diseases.
Journal Article
Role of Phagocytosis in the Pro-Inflammatory Response in LDL-Induced Foam Cell Formation; a Transcriptome Analysis
2020
Excessive accumulation of lipid inclusions in the arterial wall cells (foam cell formation) caused by modified low-density lipoprotein (LDL) is the earliest and most noticeable manifestation of atherosclerosis. The mechanisms of foam cell formation are not fully understood and can involve altered lipid uptake, impaired lipid metabolism, or both. Recently, we have identified the top 10 master regulators that were involved in the accumulation of cholesterol in cultured macrophages induced by the incubation with modified LDL. It was found that most of the identified master regulators were related to the regulation of the inflammatory immune response, but not to lipid metabolism. A possible explanation for this unexpected result is a stimulation of the phagocytic activity of macrophages by modified LDL particle associates that have a relatively large size. In the current study, we investigated gene regulation in macrophages using transcriptome analysis to test the hypothesis that the primary event occurring upon the interaction of modified LDL and macrophages is the stimulation of phagocytosis, which subsequently triggers the pro-inflammatory immune response. We identified genes that were up- or downregulated following the exposure of cultured cells to modified LDL or latex beads (inert phagocytosis stimulators). Most of the identified master regulators were involved in the innate immune response, and some of them were encoding major pro-inflammatory proteins. The obtained results indicated that pro-inflammatory response to phagocytosis stimulation precedes the accumulation of intracellular lipids and possibly contributes to the formation of foam cells. In this way, the currently recognized hypothesis that the accumulation of lipids triggers the pro-inflammatory response was not confirmed. Comparative analysis of master regulators revealed similarities in the genetic regulation of the interaction of macrophages with naturally occurring LDL and desialylated LDL. Oxidized and desialylated LDL affected a different spectrum of genes than naturally occurring LDL. These observations suggest that desialylation is the most important modification of LDL occurring in vivo. Thus, modified LDL caused the gene regulation characteristic of the stimulation of phagocytosis. Additionally, the knock-down effect of five master regulators, such as IL15, EIF2AK3, F2RL1, TSPYL2, and ANXA1, on intracellular lipid accumulation was tested. We knocked down these genes in primary macrophages derived from human monocytes. The addition of atherogenic naturally occurring LDL caused a significant accumulation of cholesterol in the control cells. The knock-down of the EIF2AK3 and IL15 genes completely prevented cholesterol accumulation in cultured macrophages. The knock-down of the ANXA1 gene caused a further decrease in cholesterol content in cultured macrophages. At the same time, knock-down of F2RL1 and TSPYL2 did not cause an effect. The results obtained allowed us to explain in which way the inflammatory response and the accumulation of cholesterol are related confirming our hypothesis of atherogenesis development based on the following viewpoints: LDL particles undergo atherogenic modifications that, in turn, accompanied by the formation of self-associates; large LDL associates stimulate phagocytosis; as a result of phagocytosis stimulation, pro-inflammatory molecules are secreted; these molecules cause or at least contribute to the accumulation of intracellular cholesterol. Therefore, it became obvious that the primary event in this sequence is not the accumulation of cholesterol but an inflammatory response.
Journal Article
Current Advances in the Diagnostic Imaging of Atherosclerosis: Insights into the Pathophysiology of Vulnerable Plaque
by
Grechko, Andrey V.
,
Orekhov, Alexander N.
,
Zhang, Dongwei
in
Acute coronary syndromes
,
Angina pectoris
,
Animals
2020
Atherosclerosis is a lipoprotein-driven inflammatory disorder leading to a plaque formation at specific sites of the arterial tree. After decades of slow progression, atherosclerotic plaque rupture and formation of thrombi are the major factors responsible for the development of acute coronary syndromes (ACSs). In this regard, the detection of high-risk (vulnerable) plaques is an ultimate goal in the management of atherosclerosis and cardiovascular diseases (CVDs). Vulnerable plaques have specific morphological features that make their detection possible, hence allowing for identification of high-risk patients and the tailoring of therapy. Plaque ruptures predominantly occur amongst lesions characterized as thin-cap fibroatheromas (TCFA). Plaques without a rupture, such as plaque erosions, are also thrombi-forming lesions on the most frequent pathological intimal thickening or fibroatheromas. Many attempts to comprehensively identify vulnerable plaque constituents with different invasive and non-invasive imaging technologies have been made. In this review, advantages and limitations of invasive and non-invasive imaging modalities currently available for the identification of plaque components and morphologic features associated with plaque vulnerability, as well as their clinical diagnostic and prognostic value, were discussed.
Journal Article
Role of Mitochondria in the Chronification of Inflammation: Focus on Dysfunctional Mitophagy and Mitochondrial DNA Mutations
by
Popov, Mikhail A.
,
Uzokov, Jamol K.
,
Orekhov, Alexander N.
in
Aging
,
Asthma
,
Autoimmune diseases
2023
Inflammation is a natural reaction of the innate immune system that evolved primarily to protect the human body from invading pathogens and to heal injuries. There are two different types of inflammation, acute and chronic inflammation, differing in duration, underlying causes, and characteristics. The acute-to-chronic transition can be determined by several pathomechanisms, including dysregulation of immune response and failure to eliminate the underlying cause. Emerging evidence suggests that dysfunctional mitochondria can promote the development of chronic inflammation. In this respect, the mechanisms triggering defective mitophagy, a selective form of autophagy that exterminates dysfunctional mitochondria to maintain cellular homeostasis, attracted special attention. This review aims to summarize current evidence underlining the role and mechanisms of mitochondria in inflammation chronification, which will contribute to develop targeted therapeutic approaches to restore mitochondrial health and alleviate chronic inflammation that can be used for a wide range of chronic inflammatory diseases.
Journal Article
The Role of Bacterial Extracellular Membrane Nanovesicles in Atherosclerosis: Unraveling a Potential Trigger
by
Orekhov, Alexander N.
,
Lusta, Konstantin A.
,
Summerhill, Volha I.
in
Angiology
,
Animals
,
Atherosclerosis - metabolism
2024
Purpose of Review
In this review, we explore the intriguing and evolving connections between bacterial extracellular membrane nanovesicles (BEMNs) and atherosclerosis development, highlighting the evidence on molecular mechanisms by which BEMNs can promote the athero-inflammatory process that is central to the progression of atherosclerosis.
Recent Findings
Atherosclerosis is a chronic inflammatory disease primarily driven by metabolic and lifestyle factors; however, some studies have suggested that bacterial infections may contribute to the development of both atherogenesis and inflammation in atherosclerotic lesions. In particular, the participation of BEMNs in atherosclerosis pathogenesis has attracted special attention.
Summary
We provide some general insights into how the immune system responds to potential threats such as BEMNs during the development of atherosclerosis. A comprehensive understanding of contribution of BEMNs to atherosclerosis pathogenesis may lead to the development of targeted interventions for the prevention and treatment of the disease.
Journal Article
MicroRNAs as Potential Biomarkers in Atherosclerosis
2019
Atherosclerosis is a complex multifactorial disease that, despite advances in lifestyle management and drug therapy, remains to be the major cause of high morbidity and mortality rates from cardiovascular diseases (CVDs) in industrialized countries. Therefore, there is a great need in reliable diagnostic/prognostic biomarkers and effective treatment alternatives to reduce its burden. It was established that microRNAs (miRNAs/miRs), a class of non-coding single-stranded RNA molecules, can regulate the expression of genes at the post-transcriptional level and, accordingly, coordinate the cellular protein expression. Thus, they are involved not only in cell-specific physiological functions but also in the cellular and molecular mechanisms of human pathologies, including atherosclerosis. MiRNAs may be significant in the dysregulation that affects endothelial integrity, the function of vascular smooth muscle and inflammatory cells, and cellular cholesterol homeostasis that drives the initiation and growth of an atherosclerotic plaque. Besides, distinct expression patterns of several miRNAs are attributed to atherosclerotic and cardiovascular patients. In this article, the evidence indicating the multiple critical roles of miRNAs and their relevant molecular mechanisms related to atherosclerosis development and progression was reviewed. Moreover, the effects of miRNAs on atherosclerosis enabled to exploit them as novel diagnostic biomarkers and therapeutic targets that may lead to better management of atherosclerosis and CVDs.
Journal Article