Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
360
result(s) for
"Sun, Qing‐Yuan"
Sort by:
Cyclins regulating oocyte meiotic cell cycle progression
2019
Oocyte meiotic maturation is a vital and final process in oogenesis. Unlike somatic cells, the oocyte needs to undergo two continuous meiotic divisions (meiosis I and meiosis II) to become a haploid gamete. Notably, oocyte meiotic progression includes two rounds of unique meiotic arrest and resumption. The first arrest occurs at the G2 (germinal vesicle) stage and meiosis resumption is stimulated by a gonadotropin surge; the second arrest takes place at the metaphase II stage, the stage from which it is released when fertilization takes place. The maturation-promoting factor, which consists of cyclin B1 (CCNB1) and cyclin-dependent kinase 1 (CDK1), is responsible for regulating meiotic resumption and progression, while CDK1 is the unique CDK that acts as the catalytic subunit of maturation-promoting factor. Recent studies showed that except for cyclin B1, multiple cyclins interact with CDK1 to form complexes, which are involved in the regulation of meiotic progression at different stages. Here, we review and discuss the control of oocyte meiotic progression by cyclins A1, A2, B1, B2, B3, and O.
Journal Article
Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals
by
Yang, Cai-Rong
,
Sun, Qing-Yuan
,
Wei, Yanchang
in
Animals
,
Biological Sciences
,
Blastocyst - metabolism
2014
The global prevalence of prediabetes and type 2 diabetes (T2D) is increasing, and it is contributing to the susceptibility to diabetes and its related epidemic in offspring. Although the impacts of paternal impaired fasting blood glucose and glucose intolerance on the metabolism of offspring have been well established, the exact molecular and mechanistic basis that mediates these impacts remains largely unclear. Here we show that paternal prediabetes increases the susceptibility to diabetes in offspring through gametic epigenetic alterations. In our findings, paternal prediabetes led to glucose intolerance and insulin resistance in offspring. Relative to controls, offspring of prediabetic fathers exhibited altered gene expression patterns in the pancreatic islets, with down-regulation of several genes involved in glucose metabolism and insulin signaling pathways. Epigenomic profiling of offspring pancreatic islets revealed numerous changes in cytosine methylation depending on paternal prediabetes, including reproducible changes in methylation over several insulin signaling genes. Paternal prediabetes altered overall methylome patterns in sperm, with a large portion of differentially methylated genes overlapping with that of pancreatic islets in offspring. Our study uniquely revealed that prediabetes can be inherited transgenerationally through the mammalian germ line by an epigenetic mechanism.
Journal Article
Global profiling of RNA-binding protein target sites by LACE-seq
by
Su, Ruibao
,
Du, Zongchang
,
Cai, Zhaokui
in
631/136/2434/1706
,
631/1647/514/2254
,
631/337/384/521
2021
RNA-binding proteins (RBPs) have essential functions during germline and early embryo development. However, current methods are unable to identify the in vivo targets of a RBP in these low-abundance cells. Here, by coupling RBP-mediated reverse transcription termination with linear amplification of complementary DNA ends and sequencing, we present the LACE-seq method for identifying RBP-regulated RNA networks at or near the single-oocyte level. We determined the binding sites and regulatory mechanisms for several RBPs, including Argonaute 2 (Ago2), Mili, Ddx4 and Ptbp1, in mature mouse oocytes. Unexpectedly, transcriptomics and proteomics analysis of
Ago2
−/−
oocytes revealed that Ago2 interacts with endogenous small interfering RNAs (endo-siRNAs) to repress mRNA translation globally. Furthermore, the Ago2 and endo-siRNA complexes fine-tune the transcriptome by slicing long terminal repeat retrotransposon-derived chimeric transcripts. The precise mapping of RBP-binding sites in low-input cells opens the door to studying the roles of RBPs in embryonic development and reproductive diseases.
Xue and colleagues developed LACE-seq to globally profile RNA targets of RNA-binding proteins at single-nucleotide resolution in low-input cells or even single oocytes.
Journal Article
The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility
2014
Mitochondria play vital roles in oocyte functions and they are critical indicators of oocyte quality which is important for fertilization and development into viable offspring. Quality-compromised oocytes are correlated with infertility, developmental disorders, reduced blastocyst cell number and embryo loss in which mitochondrial dysfunctions play a significant role. Increasingly, women affected by metabolic disorders such as diabetes or obesity and oocyte aging are seeking treatment in IVF clinics to overcome the effects of adverse metabolic conditions on mitochondrial functions and new treatments have become available to restore oocyte quality. The past decade has seen enormous advances in potential therapies to restore oocyte quality and includes dietary components and transfer of mitochondria from cells with mitochondrial integrity into mitochondria-impaired oocytes. New technologies have opened up new possibilities for therapeutic advances which will increase the success rates for IVF of oocytes from women with compromised oocyte quality.
Journal Article
RNA-Seq transcriptome reveals different molecular responses during human and mouse oocyte maturation and fertilization
by
Schatten, Heide
,
Li, Ang
,
Zhao, Zheng-Hui
in
Animal Genetics and Genomics
,
Animal models
,
Animals
2020
Background
Female infertility is a worldwide concern and the etiology of infertility has not been thoroughly demonstrated. Although the mouse is a good model system to perform functional studies, the differences between mouse and human also need to be considered. The objective of this study is to elucidate the different molecular mechanisms underlying oocyte maturation and fertilization between human and mouse.
Results
A comparative transcriptome analysis was performed to identify the differentially expressed genes and associated biological processes between human and mouse oocytes. In total, 8513 common genes, as well as 15,165 and 6126 uniquely expressed genes were detected in human and mouse MII oocytes, respectively. Additionally, the ratios of non-homologous genes in human and mouse MII oocytes were 37 and 8%, respectively. Functional categorization analysis of the human MII non-homologous genes revealed that cAMP-mediated signaling, sister chromatid cohesin, and cell recognition were the major enriched biological processes. Interestingly, we couldn’t detect any GO categories in mouse non-homologous genes.
Conclusions
This study demonstrates that human and mouse oocytes exhibit significant differences in gene expression profiles during oocyte maturation, which probably deciphers the differential molecular responses to oocyte maturation and fertilization. The significant differences between human and mouse oocytes limit the generalizations from mouse to human oocyte maturation. Knowledge about the limitations of animal models is crucial when exploring a complex process such as human oocyte maturation and fertilization.
Journal Article
Functions and dysfunctions of the mammalian centrosome in health, disorders, disease, and aging
2018
Since its discovery well over 100 years ago (Flemming, in Sitzungsber Akad Wissensch Wien 71:81–147, 1875; Van Beneden, in Bull Acad R Belg 42:35–97, 1876) the centrosome is increasingly being recognized as a most impactful organelle for its role not only as primary microtubule organizing center (MTOC) but also as a major communication center for signal transduction pathways and as a center for proteolytic activities. Its significance for cell cycle regulation has been well studied and we now also know that centrosome dysfunctions are implicated in numerous diseases and disorders including cancer, Alstrom syndrome, Bardet–Biedl syndrome, Huntington’s disease, reproductive disorders, and several other diseases and disorders. The present review is meant to build on information presented in the previous review (Schatten, in Histochem Cell Biol 129:667–686, 2008) and to highlight functions of the mammalian centrosome in health, and dysfunctions in disorders, disease, and aging with six sections focused on (1) centrosome structure and functions, and new insights into the role of centrosomes in cell cycle progression; (2) the role of centrosomes in tumor initiation and progression; (3) primary cilia, centrosome-primary cilia interactions, and consequences for cell cycle functions in health and disease; (4) transitions from centrosome to non-centrosome functions during cellular polarization; (5) other centrosome dysfunctions associated with the pathogenesis of human disease; and (6) centrosome functions in oocyte germ cells and dysfunctions in reproductive disorders and reproductive aging.
Journal Article
PRC2 and EHMT1 regulate H3K27me2 and H3K27me3 establishment across the zygote genome
2020
The formation of zygote is the beginning of mammalian life, and dynamic epigenetic modifications are essential for mammalian normal development. H3K27 di-methylation (H3K27me2) and H3K27 tri-methylation (H3K27me3) are marks of facultative heterochromatin which maintains transcriptional repression established during early development in many eukaryotes. However, the mechanism underlying establishment and regulation of epigenetic asymmetry in the zygote remains obscure. Here we show that maternal EZH2 is required for the establishment of H3K27me3 in mouse zygotes. However, combined immunostaining with ULI-NChIP-seq (ultra-low-input micrococcal nuclease-based native ChIP-seq) shows that EZH1 could partially safeguard the role of EZH2 in the formation of H3K27me2. Meanwhile, we identify that EHMT1 is involved in the establishment of H3K27me2, and that H3K27me2 might be an essential prerequisite for the following de novo H3K27me3 modification on the male pronucleus. In this work, we clarify the establishment and regulatory mechanisms of H3K27me2 and H3K27me3 in mouse zygotes.
Dynamic arrangement of epigenetic modifications such as repressive H3K27 methylation is essential for zygote development. Here the authors show that establishment of genome-wide H3K27me3 in zygotes requires EZH2, that EZH1 partially compensates for EZH2 loss, and that EHMT1 is involved in H3K27me2 establishment.
Journal Article
Poly(ADP-ribose) mediates asymmetric division of mouse oocyte
2018
Before fertilization, mammalian oocyte undergoes an asymmetric division which depends on eccentric positioning of the spindle at the oocyte cortex to form a polar body and an egg. Since the centriole is absent and, as a result, the polar array microtubules are not fully developed in oocytes, microtubules have seldom been considered as required for eccentric positioning of the spindle, while actin-related forces have instead been proposed to be primarily responsible for this process. However, the existing models are largely conflicting and the underlying mechanism of asymmetric division is still elusive. Here we show that poly(ADP-ribose) (PAR) is enriched at mouse oocyte cortical area throughout meiosis. Specific removal of cortical PAR results in an ectopic spindle and a failure of asymmetric division. During spindle migration, when the spindle deviates from the center of oocyte by a pushing force of cytoplasmic actin, the short polar array microtubules emanating from the juxtacortical spindle pole extend to the cortex and penetrate into cortical PAR, docking and stabilizing the spindle at the cortex which facilitates the asymmetric division. This process depends on the affinity between PAR and microtubule-associated proteins such as Spindly, which contributes to a physical link for cortical PAR and the spindle. Notably, fusing a PAR-binding domain to end-binding protein 3, a plus-end tracking protein at the polar array microtubules, restores the asymmetric division of oocytes with Spindly knockdown. Thus, our work demonstrates a comprehensive mechanism for oocyte spindle positioning and asymmetric division.
Journal Article
DNA Methylation in Oocytes and Liver of Female Mice and Their Offspring: Effects of High-Fat-Diet–Induced Obesity
2014
Maternal obesity has adverse effects on oocyte quality, embryo development, and the health of the offspring.
To understand the underlying mechanisms responsible for the negative effects of maternal obesity, we investigated the DNA methylation status of several imprinted genes and metabolism-related genes.
Using a high-fat-diet (HFD)-induced mouse model of obesity, we analyzed the DNA methylation of several imprinted genes and metabolism-related genes in oocytes from control and obese dams and in oocytes and liver from their offspring. Analysis was performed using combined bisulfite restriction analysis (COBRA) and bisulfite sequencing.
DNA methylation of imprinted genes in oocytes was not altered in either obese dams or their offspring; however, DNA methylation of metabolism-related genes was changed. In oocytes of obese mice, the DNA methylation level of the leptin (Lep) promoter was significantly increased and that of the Ppar-α promoter was reduced. Increased methylation of Lep and decreased methylation of Ppar-α was also observed in the liver of female offspring from dams fed the high-fat diet (OHFD). mRNA expression of Lep and Ppar-α was also significantly altered in the liver of these OHFD. In OHFD oocytes, the DNA methylation level of Ppar-α promoter was increased.
Our results indicate that DNA methylation patterns of several metabolism-related genes are changed not only in oocytes of obese mice but also in oocytes and liver of their offspring. These data may contribute to the understanding of adverse effects of maternal obesity on reproduction and health of the offspring.
Journal Article
Essential role for SUN5 in anchoring sperm head to the tail
2017
SUN (Sad1 and UNC84 domain containing)-domain proteins are reported to reside on the nuclear membrane playing distinct roles in nuclear dynamics. SUN5 is a new member of the SUN family, with little knowledge regarding its function. Here, we generated Sun5−/− mice and found that male mice were infertile. Most Sun5-null spermatozoa displayed a globozoospermia-like phenotype but they were actually acephalic spermatozoa. Additional studies revealed that SUN5 was located in the neck of the spermatozoa, anchoring sperm head to the tail, and without functional SUN5 the sperm head to tail coupling apparatus was detached from nucleus during spermatid elongation. Finally, we found that healthy heterozygous offspring could be obtained via intracytoplasmic injection of Sun5-mutated sperm heads for both male mice and patients. Our studies reveal the essential role of SUN5 in anchoring sperm head to the tail and provide a promising way to treat this kind of acephalic spermatozoa-associated male infertility.
Journal Article