Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
294 result(s) for "Sun, Tianshu"
Sort by:
A Transformer-Based Bridge Structural Response Prediction Framework
Structural response prediction with desirable accuracy is considerably essential for the health monitoring of bridges. However, it appears to be difficult in accurately extracting structural response features on account of complex on-site environment and noise disturbance, resulting in poor prediction accuracy of the response values. To address this issue, a Transformer-based bridge structural response prediction framework was proposed in this paper. The framework contains multi-layer encoder modules and attention modules that can precisely capture the history-dependent features in time-series data. The effectiveness of the proposed method was validated with the use of six-month strain response data of a concrete bridge, and the results are also compared with those of the most commonly used Long Short-Term Memory (LSTM)-based structural response prediction framework. The analysis indicated that the proposed method was effective in predicting structural response, with the prediction error less than 50% of the LSTM-based framework. The proposed method can be applied in damage diagnosis and disaster warning of bridges.
Reproductive tract microbiome dysbiosis associated with gynecological diseases
Female health and the microbiota of the reproductive tract are closely associated. The research scope on reproductive tract microbiota extends from the vaginal to the upper reproductive tract and from infectious diseases to various benign and malignant gynecological and obstetrical diseases. The primary focus of this paper was to evaluate the most recent findings about the role of reproductive tract microbiota in gynecological diseases, including endometrial polyps, uterine fibroids, endometriosis, adenomyosis, endometrial hyperplasia, and endometrial carcinoma. Different stages of gynecological diseases have diverse microbiota in the female reproductive tract, and some specific bacteria may help the disease progress. For example, Fusobacterium may exacerbate endometriosis, while treatments that target microbiota, such as antibiotics, probiotics, and flora transplantation, showed some efficacy in the experiment. These findings indicate the wonderful prospect of this field. Additionally, we have discussed how microbiome research can improve our understanding of the interactions between reproductive tract microorganisms and hosts, aid in the screening and diagnosis of gynecological diseases, and direct the development of preventive and therapeutic strategies aimed at maintaining and restoring a healthy reproductive tract microbiota when combined with other technologies like transcriptome and proteome, in vitro cultured cells, and animal models.
Prenatal exposure to Benzoapyrene affects maternal–fetal outcomes via placental apoptosis
Prenatal exposure to Benzo[a]pyrene (BaP) has been suggested to increase the risk of adverse pregnancy outcomes. However, the role of placental apoptosis on BaP reproductive toxicity is poorly understood. We conducted a maternal animal model of C57BL/6 wild-type (WT) and transformation-related protein 53 (Trp53) heterozygous knockout (p53KO) mice, as well as a nested case–control study involving 83 women with PB and 82 term birth from a birth cohort on prenatal exposure to BaP and preterm birth (PB). Pregnant WT and p53KO mice were randomly allocated to BaP treatment and control groups, intraperitoneally injected of low (7.8 mg/kg), medium (35 mg/kg), and high (78 mg/kg) doses of 3,4-BaP per day and equal volume of vegetable oil, from gestational day 10.5 until delivery. Results show that high-dose BaP treatment increased the incidence of preterm birth in WT mice. The number of fetal deaths and resorptions increased with increasing doses of BaP exposure in mice. Notably, significant reductions in maternal and birth weights, increases in placental weights, and decrease in the number of livebirths were observed in higher-dose BaP groups in dose-dependent manner. We additionally observed elevated p53-mediated placental apoptosis in higher BaP exposure groups, with altered expression levels of p53 and Bax/Bcl-2. In case–control study, the expression level of MMP2 was increased among women with high BaP exposure and associated with the increased risk of all PB and moderate PB. Our study provides the first evidence of BaP-induced reproductive toxicity and its adverse effects on maternal–fetal outcomes in both animal and population studies.
The function and regulation of heat shock transcription factor in Cryptococcus
Cryptococcus species are opportunistic human fungal pathogens. Survival in a hostile environment, such as the elevated body temperatures of transmitting animals and humans, is crucial for Cryptococcus infection. Numerous intriguing investigations have shown that the Hsf family of thermotolerance transcription regulators plays a crucial role in the pathogen-host axis of Cryptococcus . Although Hsf1 is known to be a master regulator of the heat shock response through the activation of gene expression of heat shock proteins (Hsps). Hsf1 and other Hsfs are multifaceted transcription regulators that regulate the expression of genes involved in protein chaperones, metabolism, cell signal transduction, and the electron transfer chain. In Saccharomyces cerevisiae , a model organism, Hsf1’s working mechanism has been intensively examined. Nonetheless, the link between Hsfs and Cryptococcus pathogenicity remains poorly understood. This review will focus on the transcriptional regulation of Hsf function in Cryptococcus , as well as potential antifungal treatments targeting Hsf proteins.
Cryptococcal Hsf3 controls intramitochondrial ROS homeostasis by regulating the respiratory process
Mitochondrial quality control prevents accumulation of intramitochondrial-derived reactive oxygen species (mtROS), thereby protecting cells against DNA damage, genome instability, and programmed cell death. However, underlying mechanisms are incompletely understood, particularly in fungal species. Here, we show that Cryptococcus neoformans heat shock factor 3 ( Cn Hsf3) exhibits an atypical function in regulating mtROS independent of the unfolded protein response. Cn Hsf3 acts in nuclei and mitochondria, and nuclear- and mitochondrial-targeting signals are required for its organelle-specific functions. It represses the expression of genes involved in the tricarboxylic acid cycle while promoting expression of genes involved in electron transfer chain. In addition, Cn Hsf3 responds to multiple intramitochondrial stresses; this response is mediated by oxidation of the cysteine residue on its DNA binding domain, which enhances DNA binding. Our results reveal a function of HSF proteins in regulating mtROS homeostasis that is independent of the unfolded protein response. Mitochondrial quality control prevents accumulation of intramitochondrial reactive oxygen species (mtROS), thus protecting cells against DNA damage. Here, Gao et al. show that an atypical heat shock factor responds to intramitochondrial stresses and regulates mtROS homeostasis in the pathogenic fungus Cryptococcus neoformans .
Decreased echinocandin susceptibility in Candida parapsilosis causing candidemia and emergence of a pan-echinocandin resistant case in China
Candida parapsilosis is becoming a predominant non-albicans cause of invasive candidiasis (IC). Echinocandins are the preferred choice for IC treatment and prophylaxis. Resistance to echinocandins in C. parapsilosis has emerged in several countries, but little is known about the susceptibility profile in China or about mechanisms of resistance. Here, we investigated the echinocandin susceptibilities of 2523 C. parapsilosis isolates collected from China and further explored the resistance mechanism among echinocandin-resistant isolates. Anidulafungin exhibited the highest MICs (MIC 50/90 , 1 and 2 µg/mL; GM, 0.948 µg/mL), while caspofungin showed better activity (0.5 and 1 µg/mL; 0.498 µg/mL). Significantly higher echinocandin MICs were observed among blood-derived isolates compared to others, especially for caspofungin (GM, 1.348 µg/mL vs 0.478 µg/mL). Isolates from ICU and surgical wards also showed higher MICs. Twenty isolates showed intermediate phenotypes for at least one echinocandin. One was resistant to all three echinocandins, fluconazole and voriconazole, which caused breakthrough IC during long-term exposure to micafungin. WGS revealed this isolate carried a mutation S656P in hotspot1 region of Fks1. Bioinformatics analyses suggested that this mutation might lead to an altered protein conformation. CRISPR Cas9-mediated introduction of this mutation into a susceptible reference C. parapsilosis strain increased MICs of all echinocandins 64-fold, with similar results found in the subspecies, C. orthopsilosis and C. metapsilosis. This is the first report of a multi-azole resistant and pan-echinocandin resistant C. parapsilosis isolate, and the identification of a FKS1 S656P conferring pan-echinocandin resistance. Our study underscores the necessity of rigorous management of antifungal use and of monitoring for antifungal susceptibility.
Vibration-Reduction Strategy for High-Rise Braced Frame Using Viscoelastic-Yielding Compounded BRB
A buckling-restrained brace (BRB) serves as a typical load-bearing and energy-dissipative device for the passive control of structures under seismic loading. A BRB is generally designed to not yield under frequently occurring earthquake (FOE) and wind loads, resulting in it having less effectiveness in vibration reduction compared with post-yielding performance. To address this dilemma, this study proposed the concept and technique details of the viscoelastic-yielding compounded BRB (VBRB). Different from a conventional BRB, a VBRB is fabricated by attaching the viscoelastic damper (VED) to the surface of a BRB’s steel casing, ensuring a compatible deformation pattern between the VED and the BRB’s steel core. A dynamic loading test of VBRB specimens was carried out in which 0.2 Hz~0.6 Hz in loading rate and a maximum of 550 kN in load-bearing capacity had been applied, verifying the feasibility and performance of the VBRB. Subsequently, a parametric design procedure was developed to determine the required VBRB parameters so that the maximum elastic drift response of the structure could be reduced to the code-prescriptive value. The wind-resistance and seismic performances of the VBRB were critically evaluated through dynamic time-history analyses on a 48-story mega VBRB-equipped frame designed according to the Chinese seismic design code (GB50011-2010), and the effectiveness of the approach was also verified. Results indicate that the VBRB has advantages over a conventional BRB by providing a multi-stage passive energy dissipation capacity, resulting in a better vibration-control effect than conventional BRBs for structures subjected to wind load and seismic excitations.
Pathogen-Host Interaction Repertoire at Proteome and Posttranslational Modification Levels During Fungal Infections
Prevalence of fungal diseases has increased globally in recent years, which often associated with increased immunocompromised patients, aging populations, and the novel Coronavirus pandemic. Furthermore, due to the limitation of available antifungal agents mortality and morbidity rates of invasion fungal disease remain stubbornly high, and the emergence of multidrug-resistant fungi exacerbates the problem. Fungal pathogenicity and interactions between fungi and host have been the focus of many studies, as a result, lots of pathogenic mechanisms and fungal virulence factors have been identified. Mass spectrometry (MS)-based proteomics is a novel approach to better understand fungal pathogenicities and host–pathogen interactions at protein and protein posttranslational modification (PTM) levels. The approach has successfully elucidated interactions between pathogens and hosts by examining, for example, samples of fungal cells under different conditions, body fluids from infected patients, and exosomes. Many studies conclude that protein and PTM levels in both pathogens and hosts play important roles in progression of fungal diseases. This review summarizes mass spectrometry studies of protein and PTM levels from perspectives of both pathogens and hosts and provides an integrative conceptual outlook on fungal pathogenesis, antifungal agents development, and host–pathogen interactions.
A Diagnostic Method for the Saturable Reactor Core Looseness Degree of Thyristor Converter Valves
During the long-term operation of thyristor converter valves, the saturable reactor vibration (mainly caused by magnetostriction) will lead to core looseness faults. In order to accurately evaluate the fault degradation degree, this paper proposes a vibration signal recognition model for iron core looseness based on synchrosqueezed wavelet transforms and a convolutional neural network. Firstly, vibration experiments are conducted on saturable reactors to obtain signals under different core looseness degrees. Then, the spectrogram features of vibration signals are extracted using synchrosqueezed wavelet transform. Finally, based on the high-dimensional learning ability of convolutional neural networks, the fault characteristics of the spectrogram are mined to accurately identify the core looseness degree. The research results indicate that the model in the paper has higher recognition accuracy than some other methods, which provides convenience for the monitoring and maintenance of saturable reactors.
Adaptive Passive-Control for Multi-Stage Seismic Response of High-Rise Braced Frame Using the Frictional-Yielding Compounded BRBs
Buckling-restrained brace (BRB) is a dual-function device that improves the seismic resistance and energy-dissipation capacity of structures in earthquake engineering. To achieve the expected performance under severe ground motions, BRB is usually designed to remain elastic under mild earthquakes, leading to the increased seismic forces and insignificant vibration-reduction effect on the structures at this stage. This study extends the concept of adaptive passive-control of structures by proposing a novel frictional-yielding compounded BRB (FBRB). FBRB is fabricated by connecting the BRB steel casing and end plates with the friction dampers (FDs) in such a way that the BRB steel core and FDs undergo compatible deformation. In this way, FD dissipates seismic energy under mild earthquakes, while FD together with the BRB core dissipates energy under severe ground motions, resulting in an efficient self-adaptive vibration-reduction mechanism. The proposed FBRB construction was experimentally validated by carrying out the reversed-cyclic test, and the result indicated reliable connection with stable hysteretic behavior. Subsequently, the FBRB-equipped frame was proposed and studied which adopted FBRB as the energy-dissipative devices. A parametric design method was developed to determine the FBRB parameters with which the maximum elastic drift of the system could be reduced to the code-allowable value. The approach was implemented on a 48-story mega FBRB-equipped steel frame as the case study. The seismic behavior of the FBRB-equipped case structure was compared with that of the BRB-equipped system, and critically evaluated by carrying out the nonlinear time-history analyses. Results revealed that FBRB compensated for the conventional BRB in terms of inadequate energy dissipation under mild earthquakes and, meanwhile, was more efficient than the conventional BRB in reducing the lateral drifts under severe ground motions. The analysis indicated potential application prospect of FBRB in practical engineering.