Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
494
result(s) for
"Sun, Wenyu"
Sort by:
Extreme-Low-Speed Heavy Load Bearing Fault Diagnosis by Using Improved RepVGG and Acoustic Emission Signals
2023
With the worldwide carbon neutralization boom, low-speed heavy load bearings have been widely used in the field of wind power. Bearing failure generates impulses when the rolling element passes the cracked surface of the bearing. Over the past decade, acoustic emission (AE) techniques have been used to detect failure signals. However, the high sampling rates of AE signals make it difficult to design and extract fault features; thus, deep neural network-based approaches have been proposed. In this paper, we proposed an improved RepVGG bearing fault diagnosis technique. The normalized and noise-reduced bearing signals were first converted into Mel frequency cepstrum coefficients (MFCCs) and then inputted into the model. In addition, the exponential moving average method was used to optimize the model and improve its accuracy. Data were extracted from the test bench and wind turbine main shaft bearing. Four damage classes were studied experimentally. The experimental results demonstrated that the improved RepVGG model could be employed for classifying low-speed heavy load bearing states by using MFCCs. Furthermore, the effectiveness of the proposed model was assessed by performing comparisons with existing models.
Journal Article
Genetic Characteristics and Phylogenetic Relationships of 18 Anchovy Species Based on Mitochondrial Genomes in the Seas Around China
2025
The anchovy family (Engraulidae) holds significant economic and ecological value in seas around China, playing a crucial role in fisheries and marine ecosystems in these regions. This study analyzed the complete mitochondrial genome data of 18 Engraulidae species from seas around China, integrating molecular evidence to systematically investigate mitochondrial genome structure, codon usage patterns, and phylogenetic relationships within the family. The mitochondrial genomes of Engraulidae exhibited a highly conserved structure, characterized by significant A + T richness and variable control region lengths. Codon usage analysis in seven Thryssa species revealed that base composition, particularly GC content at the third codon position (GC3s), along with purifying selection, jointly influenced codon usage patterns. Phylogenetic analyses supported the division of the 18 species into two subfamilies, Engraulinae and Coiliinae, and highlighted variability in the phylogenetic placement of Setipinna depending on the inclusion of third codon positions. Furthermore, the genus Thryssa was supported to be polyphyletic: T. baelama and T. kammalensis formed one clade, while T. dussumieri, T. hamiltonii, T. setirostris, T. vitrirostris, and T. mystax constituted a separate branch. These findings provide novel molecular evidence for species identification and the taxonomic classification of Engraulidae, while offering a foundation for further exploration of their evolutionary relationships and systematic taxonomy. In this study, we utilized the complete mitochondrial genomes of 18 Engraulidae species to analyze their basic genomic features and reconstruct the phylogenetic relationships within the family. We examined the codon usage bias in the genus Thryssa, explored the evolutionary relationships among the species within the genus, and we also provide some insights into the taxonomic revision of this genus.
Journal Article
An Improved Ship Weather Routing Framework for CII Reduction Accounting for Wind-Assisted Rotors
2022
With the increasingly strict regulations for the energy-saving and emission-reduction technology of ships, minimizing fuel cost and thus reducing the carbon intensity index (CII) is one of the most critical issues in the design and operation of merchant ships. More recently, many wind-assisted devices, such as rotors, wind sails, etc., have been investigated and designed to utilize renewable wind energy. With the equipment of wind-assisted rotors, the optimization of ship routes becomes more important because the effect of this wind-assisted device highly depends on the local wind field along the shipping route. In this paper, an improved ship weather routing framework based on the A* algorithm has been proposed to determine the optimal ship route and ship operations with wind-assisted rotors. The proposed framework effectively utilizes different sources of data, including ship design, weather forecasting and historical sailing information, to produce a better estimation of fuel consumption under the effect of sea states. Several improvements on the classic A* algorithm, including directed searching and three-dimensional extension, are proposed to improve the routing effect and efficiency. Finally, the proposed method was applied to test cases of a VLCC operating from China to the Middle East and the results show that the total fuel consumption could be reduced compared to the minimum distance route.
Journal Article
Disruption of retinal inflammation and the development of diabetic retinopathy in mice by a CD40-derived peptide or mutation of CD40 in Müller cells
by
Lopez Corcino, Yalitza
,
Subauste, Carlos S
,
Sun, Wenyu
in
Binding sites
,
Bioluminescence
,
CD40 antigen
2022
Aims/hypothesisCD40 expressed in Müller cells is a central driver of diabetic retinopathy. CD40 causes phospholipase Cγ1 (PLCγ1)-dependent ATP release in Müller cells followed by purinergic receptor (P2X7)-dependent production of proinflammatory cytokines in myeloid cells. In the diabetic retina, CD40 and P2X7 upregulate a broad range of inflammatory molecules that promote development of diabetic retinopathy. The molecular event downstream of CD40 that activates the PLCγ1–ATP–P2X7–proinflammatory cytokine cascade and promotes development of diabetic retinopathy is unknown. We hypothesise that disruption of the CD40-driven molecular events that trigger this cascade prevents/treats diabetic retinopathy in mice.MethodsB6 and transgenic mice with Müller cell-restricted expression of wild-type (WT) CD40 or CD40 with mutations in TNF receptor-associated factor (TRAF) binding sites were made diabetic using streptozotocin. Leucostasis was assessed using FITC-conjugated concanavalin A. Histopathology was examined in the retinal vasculature. Expression of inflammatory molecules and phospho-Tyr783 PLCγ1 (p-PLCγ1) were assessed using real-time PCR, immunoblot and/or immunohistochemistry. Release of ATP and cytokines were measured by ATP bioluminescence and ELISA, respectively.ResultsHuman Müller cells with CD40 ΔT2,3 (lacks TRAF2,3 binding sites) were unable to phosphorylate PLCγ1 and release ATP in response to CD40 ligation, and could not induce TNF-α/IL-1β secretion in bystander myeloid cells. CD40–TRAF signalling acted via Src to induce PLCγ1 phosphorylation. Diabetic mice in which WT CD40 in Müller cells was replaced by CD40 ΔT2,3 failed to exhibit phosphorylation of PLCγ1 in these cells and upregulate P2X7 and TNF-α in microglia/macrophages. P2x7 (also known as P2rx7), Tnf-α (also known as Tnf), Il-1β (also known as Il1b), Nos2, Icam-1 (also known as Icam1) and Ccl2 mRNA were not increased in these mice and the mice did not develop retinal leucostasis and capillary degeneration. Diabetic B6 mice treated intravitreally with a cell-permeable peptide that disrupts CD40–TRAF2,3 signalling did not exhibit either upregulation of P2X7 and inflammatory molecules in the retina or leucostasis.Conclusions/interpretationCD40–TRAF2,3 signalling activated the CD40–PLCγ1–ATP–P2X7–proinflammatory cytokine pathway. Src functioned as a link between CD40–TRAF2,3 and PLCγ1. Replacing WT CD40 with CD40 ΔT2,3 impaired activation of PLCγ1 in Müller cells, upregulation of P2X7 in microglia/macrophages, upregulation of a broad range of inflammatory molecules in the diabetic retina and the development of diabetic retinopathy. Administration of a peptide that disrupts CD40–TRAF2,3 signalling reduced retinal expression of inflammatory molecules and reduced leucostasis in diabetic mice, supporting the therapeutic potential of pharmacological inhibition of CD40–TRAF2,3 in diabetic retinopathy.
Journal Article
Measurement Method of Physical Parameters of Two-Phase Flow Based on Dual-Frequency Demodulation
2023
Oil-water two-phase flow commonly occurs in the process of crude oil electric dehydration. Here, through dynamic changes in the water content and conductivity of oil-water two-phase flow in the process of electric dehydration, the influence of water content and conductivity on the efficiency and stability of electric dehydration is analyzed. Using real-time in-line measurements of water content and conductivity, the electric dehydration system is kept in an optimal state, which provides a basis for realizing efficient oil-water separation. Measurements of the physical parameters of oil-water two-phase flow is affected by many factors, such as the temperature of the two-phase flow, composition of the two-phase flow medium, structure of the measurement sensor, coupling of the conventional resistance–capacitance excitation signal, and processing of the measurement data. This complexity causes, some shortcomings to the control system, such as a large measurement error, limited measurement range, inability to measure the medium water phase as a conductive water phase, etc., and not meeting the requirements of the electric dehydration process. To solve that the conductivity and water content of high-conductivity crude oil emulsions cannot be measured synchronously, the RC relationship of oil-water emulsions is measured synchronously using dual-frequency digital demodulation technology, which verifies the feasibility of our test method for the synchronous measurement of physical parameters of homogeneous oil-water two-phase flow. Experimental results show that the novel measuring method (which is within the target measuring range) can be used to measure water content 0~40% and conductivity 1 ms/m~100 ms/m. The measuring error of the water content is less than 2%, and the measuring error of the conductivity is less than 5%.
Journal Article
Visualizing alkali metal aggregation-induced coordination in CO2 activation on copper
2025
Alkali metals are widely recognized as promotors in CO
2
activation and conversion. However, how the alkali metals activate CO
2
molecules and stabilize the reaction intermediates remains controversial due to the lack of atomic-scale characterization. Here, using scanning tunneling microscopy and non-contact atomic force microscopy, we directly visualize the coordination structure of alkali metal cations (K
+
and Cs
+
) and CO
2
reaction intermediates on copper surfaces. At the initial step, we find the aggregation of alkali ions into trimers to facilitate the activation of CO
2
. Subsequently, the activated CO
2
δ-
undergoes C-C coupling to form oxalate on Cu(100), that is coordinated with four alkali ions. Density functional theory calculations reveal the cooperative role of alkali trimers in stabilizing key intermediates, overcoming Coulomb repulsion, and significantly lowering the reaction barrier for CO
2
conversion. Higher CO
2
pressure promotes the production of two-dimensional ordered alkali carbonate films. Our findings provide valuable insights for designing efficient catalysts for carbon capture and utilization.
Using scanning tunneling microscopy and qPlus based non-contact atomic force microscopy, this work directly visualized the aggregation of specific number of alkali metals in promoting the activation and reaction of CO
2
on copper surfaces.
Journal Article
Deep Image Compression with Residual Learning
2020
An end-to-end image compression framework based on deep residual learning is proposed. Three levels of residual learning are adopted to improve the compression quality: (1) the ResNet structure; (2) the deep channel residual learning for quantization; and (3) the global residual learning in full resolution. Residual distribution is commonly a single Gaussian distribution, and relatively easy to be learned by the neural network. Furthermore, an attention model is combined in the proposed framework to compress regions of an image with different bits adaptively. Across the experimental results on Kodak PhotoCD test set, the proposed approach outperforms JPEG and JPEG2000 by PSNR and MS-SSIM at low BPP (bit per pixel). Furthermore, it can produce much better visual quality. Compared to the state-of-the-art deep learning-based codecs, the proposed approach also achieves competitive performance.
Journal Article
Investigation and Modeling of Multi-Node Body Channel Wireless Power Transfer
by
Yang, Huazhong
,
Sun, Wenyu
,
Zhao, Jian
in
Antennas
,
body channel wireless power transfer (bc-wpt)
,
Efficiency
2019
Insufficient power supply is a huge challenge for wireless body area network (WBAN). Body channel wireless power transfer (BC-WPT) is promising to realize multi-node high-efficiency power transmission for miniaturized WBAN nodes. However, the behavior of BC-WPT, especially in the multi-node scenario, is still lacking in research. In this paper, the inter-degeneration mechanism of a multi-node BC-WPT is investigated based on the intuitive analysis of the existing circuit model. Co-simulation in the Computer Simulation Technology (CST) and Cadence platform and experiments in a general indoor environment verify this mechanism. Three key factors, including the distance between the source and the harvester, frequency of the source, and area of the ground electrodes, are taken into consideration, resulting in 15 representative cases for simulation and experiments studies. Based on the simulation parameters, an empirical circuit model to accurately predict the received power of multiple harvesters is established, which fits well with the measurement results, and can further provide guidelines for designs and research on multi-node BC-WPT systems.
Journal Article
The miR-378c-Samd1 circuit promotes phenotypic modulation of vascular smooth muscle cells and foam cells formation in atherosclerosis lesions
2021
MicroRNAs have emerged as key regulators in vascular diseases and are involved in the formation of atherosclerotic lesions. However, the atherosclerotic-specific MicroRNAs and their functional roles in atherosclerosis are unclear. Here, we report that miR-378c protects against atherosclerosis by directly targeting Sterile Alpha Motif Domain Containing 1 (Samd1), a predicted transcriptional repressor. miR-378c was strikingly reduced in atherosclerotic plaques and blood of acute coronary syndrome (ACS) patients relative to healthy controls. Suppression of miR-378c promoted vascular smooth muscle cells (VSMCs) phenotypic transition during atherosclerosis. We also reported for the first time that Samd1 prolonged immobilization of LDL on the VSMCs, thus facilitated LDL oxidation and subsequently foam cell formation. Further, we found that Samd1 contains predicted DNA binding domain and directly binds to DNA regions as a transcriptional repressor. Together, we uncovered a novel mechanism whereby miR-378c-Samd1 circuit participates in two key elements of atherosclerosis, VSMCs phenotypic transition and LDL oxidation. Our results provided a better understanding of atherosclerosis pathophysiology and potential therapeutic management by targeting miR-378c-Samd1 circuit.
Journal Article
The outcomes and prognostic factors of patients who underwent reoperation for persistent/recurrent papillary thyroid carcinoma
2022
Background
While the most suitable approach for treating persistent/recurrent papillary thyroid carcinoma (PTC) remains controversial, reoperation may be considered an effective method. The efficacy of reoperation in patients with locoregional persistent/recurrent PTC, especially those with unsatisfactory radioactive iodine (RAI) ablation results, is still uncertain. This study aimed to clarify the clinical management strategies for locoregional persistent/recurrent PTC and to explore factors that may affect long-term patient outcomes after reoperation.
Methods
In total, 124 patients who initially underwent thyroidectomy and variable extents of RAI therapy and finally received reoperation for locoregionally persistent/recurrent PTC were included. The parameters associated with recurrence-free survival (RFS) were analysed using a Cox proportional hazards model.
Results
Overall, 124 patients presented with structural disease after initial therapy and underwent secondary surgical resection, of whom 32 patients developed further structural disease during follow-up after reoperation. At the time of reoperation, metastatic lymph nodes with extranodal extension (
P
= 0.023) and high unstimulated thyroglobulin (unstim-Tg) levels after reoperation (post-reop) (
P
= 0.001) were independent prognostic factors for RFS. Neither RAI avidity nor the frequency and dose of RAI therapies before reoperation affected RFS.
Conclusions
Reoperation is an ideal clinical treatment strategy for structural locoregional persistent/recurrent PTC, and repeated empirical RAI therapies performed prior to reoperation may not contribute to the long-term outcomes of persistent/recurrent PTC patients. Metastatic lymph nodes with extranodal extension and post-reop unstim-Tg > 10.1 ng/mL may predict a poor prognosis.
Journal Article