Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7
result(s) for
"Sun, Yinzheng"
Sort by:
The Riemann problem for isentropic compressible Euler equations with discontinuous flux
2024
We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux, more specifically, for pressureless flow on the left and polytropic flow on the right separated by a discontinuity
x = x
(
t
). We prove that this problem admits global Radon measure solutions for all kinds of initial data. The over-compressing condition on the discontinuity
x = x
(
t
) is not enough to ensure the uniqueness of the solution. However, there is a unique piecewise smooth solution if one proposes a slip condition on the right-side of the curve
x = x
(
t
) + 0, in addition to the full adhesion condition on its left-side. As an application, we study a free piston problem with the piston in a tube surrounded initially by uniform pressureless flow and a polytropic gas. In particular, we obtain the existence of a piecewise smooth solution for the motion of the piston between a vacuum and a polytropic gas. This indicates that the singular Riemann problem looks like a control problem in the sense that one could adjust the condition on the discontinuity of the flux to obtain the desired flow field.
Journal Article
A class of piecewise constant Radon measure solutions to Riemann problems of compressible Euler equations with discontinuous fluxes: pressureless flow versus Chaplygin gas
by
Sun, Yinzheng
,
Feng, Li
,
Jin, Yunjuan
in
Engineering
,
Mathematical Methods in Physics
,
Theoretical and Applied Mechanics
2024
We investigate the wave structure and new phenomena of the Riemann problems of isentropic compressible Euler equations with discontinuous flux in momentum caused by different equations of states, including pressureless flow and Chaplygin gas. Specifically, we focus on solutions within the class of Radon measures. To resolve the discontinuous flux, we introduce a delta shock that admits mass concentration between the pressureless flow on the left and Chaplygin gas on the right. By exploring both the classical and singular Riemann problems, we find that a global delta shock solution exists, satisfying the over-compressing condition. This finding is a generalization of classical theories on Riemann problems. In particular, we demonstrate that a vacuum left state and right Chaplygin gas can always be connected by a global delta shock satisfying the over-compressing condition. For singular Riemann problems, influenced by initial velocity, we observe that for some initial data, the composite wave comprises contact discontinuities, vacuum, and a local delta shock satisfying the over-compressing condition. Through a detailed analysis of the intricate interactions between contact discontinuities and delta shocks, we show that this local solution can be extended globally.
Journal Article
A class of piecewise constant Radon measure solutions to Riemann problems of compressible Euler equations with discontinuous fluxes: pressureless flow versus Chaplygin gas
2024
We investigate the wave structure and new phenomena of the Riemann problems of isentropic compressible Euler equations with discontinuous flux in momentum caused by different equations of states, including pressureless flow and Chaplygin gas. Specifically, we focus on solutions within the class of Radon measures. To resolve the discontinuous flux, we introduce a delta shock that admits mass concentration between the pressureless flow on the left and Chaplygin gas on the right. By exploring both the classical and singular Riemann problems, we find that a global delta shock solution exists, satisfying the over-compressing condition. This finding is a generalization of classical theories on Riemann problems. In particular, we demonstrate that a vacuum left state and right Chaplygin gas can always be connected by a global delta shock satisfying the over-compressing condition. For singular Riemann problems, influenced by initial velocity, we observe that for some initial data, the composite wave comprises contact discontinuities, vacuum, and a local delta shock satisfying the over-compressing condition. Through a detailed analysis of the intricate interactions between contact discontinuities and delta shocks, we show that this local solution can be extended globally.
Journal Article
Discovery and biosynthesis of tricyclic copper-binding ribosomal peptides containing histidine-to-butyrine crosslinks
2023
Cyclic peptide natural products represent an important class of bioactive compounds and clinical drugs. Enzymatic side-chain macrocyclization of ribosomal peptides is a major strategy developed by nature to generate these chemotypes, as exemplified by the superfamily of ribosomally synthesized and post-translational modified peptides. Despite the diverse types of side-chain crosslinks in this superfamily, the participation of histidine residues is rare. Herein, we report the discovery and biosynthesis of bacteria-derived tricyclic lanthipeptide noursin, which is constrained by a tri amino acid labionin crosslink and an unprecedented histidine-to-butyrine crosslink, named histidinobutyrine. Noursin displays copper-binding ability that requires the histidinobutyrine crosslink and represents the first copper-binding lanthipeptide. A subgroup of lanthipeptide synthetases, named LanKC
Hbt
, were identified to catalyze the formation of both the labionin and the histidinobutyrine crosslinks in precursor peptides and produce noursin-like compounds. The discovery of the histidinobutyrine-containing lanthipeptides expands the scope of post-translational modifications, structural diversity and bioactivity of ribosomally synthesized and post-translational modified peptides.
Cyclic peptides are important bioactive compounds and drugs, synthesised by enzymatic side-chain macrocyclization of ribosomal peptides, which rarely involves histidine residues. Here, the authors report the discovery and biosynthesis of tricyclic lanthipeptide noursin, constrained by a tri amino acid labionin crosslink and histidine-to-butyrine crosslink, which is important for copper binding of noursin.
Journal Article
RNA-Seq-Based Transcriptomics and GC–MS Quantitative Analysis Reveal Antifungal Mechanisms of Essential Oil of Clausena lansium (Lour.) Skeels Seeds against Candida albicans
2023
Infections caused by Candida albicans (C. albicans) and increasing resistance to commonly used drugs lead to a variety of mucosal diseases and systemic infectious diseases. We previously confirmed that the essential oil of Clausena lansium (Lour.) Skeels seeds (CSEO) had antifungal activity against C. albicans, but the detailed mechanism between the chemical components and antifungal activity is unclear. In this study, a quantitative analysis of five volatile components of CSEO, including sabinene, α-phellandrene, β-phellandrene, 4-terpineol, and β-caryophyllene, was carried out using the gas chromatography–mass spectrometry (GC–MS) method. Both the broth dilution and kinetic growth methods proved that the antifungal activity of CSEO against fluconazole-resistant C. albicans was better than that of its main components (sabinene and 4-terpineol). To further investigate the inhibitory mechanism, the transcriptional responses of C. albicans to CSEO, sabinene, and 4-terpineol treatment were determined based on RNA-seq. The Venn diagram and clustering analysis pattern of differential expression genes showed the mechanism of CSEO and 4-terpineol’s anti-C. albicans activity might be similar from the perspective of the genes. Functional enrichment analysis suggested that CSEO regulated adherence-, hyphae-, and biofilm-formation-related genes, which may be CSEO’s active mechanism of inhibiting the growth of fluconazole-resistant C. albicans. Overall, we preliminarily revealed the molecular mechanism between the chemical components and the antifungal activity of CSEO against C. albicans. This study provides new insights to overcome the azole resistance of C. albicans and promote the development and application of C. lansium (Lour.) Skeels seeds.
Journal Article
RNA-Seq-Based Transcriptomics and GC–MS Quantitative Analysis Reveal Antifungal Mechanisms of Essential Oil of IClausena lansium/I Skeels Seeds against ICandida albicans/I
2023
Infections caused by Candida albicans (C. albicans) and increasing resistance to commonly used drugs lead to a variety of mucosal diseases and systemic infectious diseases. We previously confirmed that the essential oil of Clausena lansium (Lour.) Skeels seeds (CSEO) had antifungal activity against C. albicans, but the detailed mechanism between the chemical components and antifungal activity is unclear. In this study, a quantitative analysis of five volatile components of CSEO, including sabinene, α-phellandrene, β-phellandrene, 4-terpineol, and β-caryophyllene, was carried out using the gas chromatography–mass spectrometry (GC–MS) method. Both the broth dilution and kinetic growth methods proved that the antifungal activity of CSEO against fluconazole-resistant C. albicans was better than that of its main components (sabinene and 4-terpineol). To further investigate the inhibitory mechanism, the transcriptional responses of C. albicans to CSEO, sabinene, and 4-terpineol treatment were determined based on RNA-seq. The Venn diagram and clustering analysis pattern of differential expression genes showed the mechanism of CSEO and 4-terpineol’s anti-C. albicans activity might be similar from the perspective of the genes. Functional enrichment analysis suggested that CSEO regulated adherence-, hyphae-, and biofilm-formation-related genes, which may be CSEO’s active mechanism of inhibiting the growth of fluconazole-resistant C. albicans. Overall, we preliminarily revealed the molecular mechanism between the chemical components and the antifungal activity of CSEO against C. albicans. This study provides new insights to overcome the azole resistance of C. albicans and promote the development and application of C. lansium (Lour.) Skeels seeds.
Journal Article
Saccharomyces boulardii Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice by Regulating NF-κB and Nrf2 Signaling Pathways
by
Gao, Hui
,
Li, Yinzheng
,
Wang, Meng
in
Animals
,
Apoptosis
,
Colitis, Ulcerative - chemically induced
2021
Saccharomyces boulardii (S. boulardii) is a probiotic yeast that is widely used to treat gastrointestinal disorders. The present study is aimed to explore the therapeutic effects of S. boulardii on dextran sulfate sodium- (DSS-) induced murine ulcerative colitis (UC) and illustrate the mechanisms of action. C57BL/6 mice were administered S. boulardii (105 and 107 CFU/ml, p.o.) for 3 weeks and then given DSS [2.5% (w/v)] for one week. Administration of S. boulardii prevented DSS-induced reduction in body weight, diarrhea, bloody feces, decreased colon length, and loss of histological structure. Moreover, S. boulardii protected the intestinal barrier by increasing the levels of tight junction proteins zona occludens-1 and Occludin and exerted immunomodulatory effects in DSS-induced mice. Furthermore, S. boulardii suppressed the colonic inflammation by reducing the levels of Interleukin-1β, Interleukin-6, and Tumor necrosis factor alpha and restored myeloperoxidase activity in mice exposed to DSS. S. boulardii also mitigated colonic oxidative damage by increasing the levels of antioxidant enzymes (superoxide dismutase, catalase, and heme oxygenase 1) and glutathione and decreasing malondialdehyde accumulation. Further studies identified that S. boulardii suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) p65 subunit by decreasing IκKα/β levels, while promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) in DSS-exposed mice. Collectively, S. boulardii possessed an appreciable therapeutic effect against the experimental mice model of UC. The protective mechanism of S. boulardii may involve inhibition of NF-κB-mediated proinflammatory signaling and activation of Nrf2-modulated antioxidant defense in addition to intestinal barrier protective and immunomodulatory effects.
Journal Article