Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Sundquist, E.T"
Sort by:
The Global Carbon Dioxide Budget
The increase in atmospheric CO$_2$ levels during the last deglaciation was comparable in magnitude to the recent historical increase. However, global CO$_2$ budgets for these changes reflect fundamental differences in rates and in sources and sinks. The modern oceans are a rapid net CO$_2$ sink, whereas the oceans were a gradual source during the deglaciation. Unidentified terrestrial CO$_2$ sinks are important uncertainties in both the deglacial and recent CO$_2$ budgets. The deglacial CO$_2$ budget represents a complexity of long-term dynamic behavior that is not adequately addressed by current models used to forecast future atmospheric CO$_2$ levels.
Dynamics of Soil Carbon During Deglaciation of the Laurentide Ice Sheet
Deglaciation of the Laurentide Ice Sheet in North America was accompanied by sequestration of organic carbon in newly exposed soils. The greatest rate of land exposure occurred around 12,000 to 8,000 years ago, and the greatest increase in the rate of carbon sequestration by soils occurred from 8,000 to 4,000 years ago. Sequestration of carbon in deglaciated peat lands continues today, and a steady state has not been reached. The natural rate of carbon sequestration in soils, however, is small relative to the rate of anthropogenic carbon dioxide production.
Carbon Dioxide in the Ocean Surface: The Homogeneous Buffer Factor
The amount of carbon dioxide that can be dissolved in surface seawater depends at least partially on the homogeneous buffer factor, which is a mathematical function of the chemical equilibrium conditions among the various dissolved inorganic species. Because these equilibria are well known, the homogeneous buffer factor is well known. Natural spatial variations depend very systematically on sea surface temperatures, and do not contribute significantly to uncertainties in the present or future carbon dioxide budget.
Oil Shales and Carbon Dioxide
During retorting of oil shales in the western United States, carbonate minerals are calcined, releasing significant amounts of carbon dioxide. Residual organic matter in the shales may also be burned, adding more carbon dioxide to the atmosphere. The amount of carbon dioxide produced depends on the retort process and the grade and mineralogy of the shale. Preliminary calculations suggest that retorting of oil shales from the Green River Formation and burning of the product oil could release one and one-half to five times more carbon dioxide than burning of conventional oil to obtain the same amount of usable energy. The largest carbon dioxide releases are associated with retorting processes that operate at temperatures greater than about 600° C.