Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
28
result(s) for
"Suolang, Sizhu"
Sort by:
Metagenomic insights into the diversity of carbohydrate-degrading enzymes in the yak fecal microbial community
2020
Background
Yaks are able to utilize the gastrointestinal microbiota to digest plant materials. Although the cellulolytic bacteria in the yak rumen have been reported, there is still limited information on the diversity of the major microorganisms and putative carbohydrate-metabolizing enzymes for the degradation of complex lignocellulosic biomass in its gut ecosystem.
Results
Here, this study aimed to decode biomass-degrading genes and genomes in the yak fecal microbiota using deep metagenome sequencing. A comprehensive catalog comprising 4.5 million microbial genes from the yak feces were established based on metagenomic assemblies from 92 Gb sequencing data. We identified a full spectrum of genes encoding carbohydrate-active enzymes, three-quarters of which were assigned to highly diversified enzyme families involved in the breakdown of complex dietary carbohydrates, including 120 families of glycoside hydrolases, 25 families of polysaccharide lyases, and 15 families of carbohydrate esterases. Inference of taxonomic assignments to the carbohydrate-degrading genes revealed the major microbial contributors were
Bacteroidaceae
,
Ruminococcaceae
,
Rikenellaceae
,
Clostridiaceae
, and
Prevotellaceae
. Furthermore, 68 prokaryotic genomes were reconstructed and the genes encoding glycoside hydrolases involved in plant-derived polysaccharide degradation were identified in these uncultured genomes, many of which were novel species with lignocellulolytic capability.
Conclusions
Our findings shed light on a great diversity of carbohydrate-degrading enzymes in the yak gut microbial community and uncultured species, which provides a useful genetic resource for future studies on the discovery of novel enzymes for industrial applications.
Journal Article
Multidrug-Resistant Enterococcus faecalis from Yak Feces: Isolation, Genomic Characterization and Functional Insights
by
Bai, Zhanchun
,
Suolang, Sizhu
,
Li, Zixuan
in
Antibiotic resistance
,
Antibiotics
,
Antimicrobial agents
2025
Enterococcus faecalis (E. faecalis) is a significant zoonotic pathogen, primarily causing opportunistic infections in humans while often existing as a commensal in animal reservoirs, facilitating its dissemination. Current understanding of the resistance profiles, virulence mechanisms, and host–pathogen interactions of E. faecalis from ruminants, particularly unique species such as the plateau yak, remains limited. This knowledge gap hinders the accurate assessment of their transmission risk and the development of effective control strategies. This study presents a comprehensive analysis of a multidrug-resistant E. faecalis isolate from yak feces, integrating whole-genome sequencing (WGS), an animal challenge model, and transcriptomic profiling. Antimicrobial susceptibility testing revealed resistance to β-lactams, aminoglycosides, glycopeptides, tetracyclines, and fluoroquinolones. WGS identified numerous resistance genes (e.g., parC, gyrA, rpoB) and virulence-associated genes (e.g., prgB/asc10, cpsA/uppS). Phylogenetic analysis indicated a close relationship with a human urinary tract isolate (ASM3679337v1). Mouse challenge experiments demonstrated that this strain induced significant intestinal histopathological damage. A subsequent transcriptomic analysis of infected tissues identified the differential activation of key signaling pathways, including NF-κB and MAPK. Our findings provide crucial insights into the resistance and pathogenic mechanisms of ruminant-derived E. faecalis and establish an experimental foundation for optimizing clinical antimicrobial therapy against such strains.
Journal Article
Treatment-Related Mechanisms of Tibetan Medicine Terminalia chebula (TC) Aqueous Extract Against Mouse Gastroenteritis Caused by Yak-Origin Salmonella Determined Using Intestinal Microbiome Analysis and Metabolomics
2025
This study aimed to evaluate the therapeutic effect of Terminalia chebula (TC) on Tibetan yak-origin Salmonella-induced diarrhea and dysentery in mice. The levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α), anti-inflammatory cytokines (IL-4 and IL-10), and the oxidative stress markers malondialdehyde (MDA), superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), reduced glutathione (GSH-PX), and catalase (CAT) in the serum of mice were measured using ELISA kits. Using microbial diversity sequencing and non-targeted metabolomics detection techniques, the relevant mechanisms of TC treatment in a mouse Salmonella infection model were evaluated. The results showed the following: TC can effectively reduce the diarrhea rate; alleviate weight loss caused by Salmonella invasion; reduce the pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α in serum; and increase the concentrations of the anti-inflammatory cytokines IL-4 and IL-10. TC can improve the body’s antioxidant levels to heal the damage caused by oxidative stress and lipid peroxidation. The histological section results show that TC can significantly improve gastric and intestinal tissue lesions and has no toxic effects on the liver and kidneys. 16S rRNA and ITS sequencing analysis suggests that Lactobacillus, Enterorhabdus, Alistipes (bacterial community), Lodderomyces, Saccharomyces, and Penicillium (fungal community) may be key functional microbial communities in TC. Non-targeted metabolomics also suggests that the antibacterial treatment of dysentery with chebulic acid may be related to regulation of the Ras signaling pathway, long-term potentiation, the MAPK signaling pathway, metabolic pathways, and gut microbiome composition. Conclusion: TC has clear clinical efficacy in treating bacterial diarrhea, presenting anti-inflammatory and antioxidant effects. Its roles in regulating the gut microbiome and metabolic pathways and products were determined as the main reason for its therapeutic effect in a mouse gastroenteritis model caused by Salmonella infection.
Journal Article
An Epidemiological Study on Salmonella in Tibetan Yaks from the Qinghai–Tibet Plateau Area in China
2024
Salmonella is an important foodborne pathogen that can cause a range of illnesses in humans; it has also been a key focus for monitoring in the field of public health, including gastroenteritis, sepsis, and arthritis, and can also cause a decline in egg production in poultry and diarrhea and abortion in livestock, leading to death in severe cases, resulting in huge economic losses. This study aimed to investigate the isolation rate, antimicrobial resistance, serotypes, and genetic diversity of Salmonella isolated from yak feces in various regions on the Qinghai–Tibet Plateau. A total of 1222 samples of yak dung were collected from major cities in the Qinghai–Tibet Plateau area, and the sensitivity of the isolated bacteria to 10 major classes of antibiotics was determined using the K-B paper disk diffusion method for drug susceptibility. Meanwhile, the serotypes of the isolated bacteria were analyzed using the plate agglutination test for serum antigens, and their carriage of drug resistance and virulence genes was determined using PCR and gel electrophoresis experiments. The isolated bacteria were also classified using MLST (Multi-Locus Sequence Typing). The overall isolation rate for Salmonella was 18.25% (223/1222), and the results of the antibiotic susceptibility tests showed that 98.65% (220/223) of the isolated bacteria were resistant to multiple antibiotics. In the 223 isolates of Salmonella, eight classes of 20 different resistance genes, 30 serotypes, and 15 different types of virulence genes were detected. The MLST analysis identified 45 distinct sequence types (STs), including five clonal complexes, of which ST34, ST11, and ST19 were the most common. These findings contribute valuable information about strain resources, genetic profiles, and typing data for Salmonella in the Qinghai–Tibet Plateau area, facilitating improved bacterial surveillance, identification, and control in yak populations. They also provide certain data supplements for animal Salmonella infections globally, filling research gaps.
Journal Article
Detection and Whole Genome Amplification of the 4d Type of Porcine Hepatitis E Virus in Eastern Tibet, China
2025
ABSTRACT
Genomic and evolutionary analysis of epidemic porcine hepatitis E virus (HEV) in the Tibetan Plateau was performed. Faecal samples were collected from 216 Tibetan pigs and 78 Tibetan Yorkshire (Large White) and 53 tissue samples from Yorkshire from the Linzhi City slaughterhouse. Total RNA was extracted from faeces and fragments of HEV open reading frame 2 (ORF2) detected by reverse transcription and nested polymerase chain reaction (RT‐nPCR) and cloned. Twenty‐three samples (23/347; 6.63%) were positive for the virus, including 6.94% (15/216) Tibetan pig and 6.11% (8/131) Yorkshire samples. No tissue samples tested positive for the virus. Cloned sequences were uploaded to GenBank (accession numbers: OR392679‐OR392685, OR355817‐OR355824 and OR909495‐OR909502) and a phylogenetic tree constructed. The entire viral genome was amplified using primers for the 5‐month‐old Tibetan pig sequence which confirmed that the strain belonged to HEV type 4, subtype d (GenBank accession number: OQ981960) and showed 93.30% homology with Sichuan Tibetan pig sequence, MK410044. Bayesian tree analysis showed that the earliest divergence was in 1999 and evidence of homologous recombination was found. Genomic and evolutionary analysis of HEV in the Tibetan Plateau is presented. The importance of continuous surveillance and genomic analysis of HEV is highlighted, especially in regions like the Tibetan Plateau where new strains may emerge. The findings contribute to our understanding of HEV's genetic diversity, evolutionary history and potential risks to animal and human health.
Hepatitis E virus (HEV) genes and antibodies were detected by collecting samples from three types of Xizang pigs, such as Xizang Tibetan pigs, Yorkshire pig faeces and Xizang Yorkshire pig liver tissues. Results the prevalent genotype of HEV in Xizang York pig herd and the whole genome genetic information of HEV in Xizang Tibetan pig were known. This work has enriched the epidemiological and genomic information of swine HEV in Xizang.
Journal Article
Next-Generation Sequencing Reveals Four Novel Viruses Associated with Calf Diarrhea
2021
Calf diarrhea is one of the common diseases involved in the process of calf feeding. In this study, a sample of calf diarrhea that tested positive for bovine coronavirus and bovine astrovirus was subjected to high-throughput sequencing. The reassembly revealed the complete genomes of bovine norovirus, bovine astrovirus, bovine kobuvirus, and the S gene of bovine coronavirus. Phylogenetic analysis showed that the ORF2 region of bovine astrovirus had the lowest similarity with other strains and gathered in the Mamastrovirus unclassified genogroup, suggesting a new serotype/genotype could appear. Compared with the most closely related strain, there are six amino acid mutation sites in the S gene of bovine coronavirus, most of which are located in the S1 subunit region. The bovine norovirus identified in our study was BNoV-GIII 2, based on the VP1 sequences. The bovine kobuvirus is distributed in the Aichi virus B genus; the P1 gene shows as highly variable, while the 3D gene is highly conserved. These findings enriched our knowledge of the viruses in the role of calf diarrhea, and help to develop an effective strategy for disease prevention and control.
Journal Article
Investigation of Antimicrobial Resistance in Escherichia coli and Enterococci Isolated from Tibetan Pigs
2014
This study investigated the antimicrobial resistance of Escherichia coli and enterococci isolated from free-ranging Tibetan pigs in Tibet, China, and analyzed the influence of free-ranging husbandry on antimicrobial resistance.
A total of 232 fecal samples were collected from Tibetan pigs, and the disk diffusion method was used to examine their antimicrobial resistance. Broth microdilution and agar dilution methods were used to determine minimum inhibitory concentrations for antimicrobial agents for which disks were not commercially available.
A total of 129 E. coli isolates and 84 Enterococcus isolates were recovered from the fecal samples. All E. coli isolates were susceptible to amoxicillin/clavulanic acid, and 40.4% were resistant to tetracycline. A small number of isolates were resistant to florfenicol (27.9%), ampicillin (27.9%), sulfamethoxazole/trimethoprim (19.4%), nalidixic acid (19.4%), streptomycin (16.2%) and ceftiofur (10.9%), and very low resistance rates to ciprofloxacin (7.8%), gentamicin (6.9%), and spectinomycin (2.3%) were observed in E. coli. All Enterococcus isolates, including E. faecium, E. faecalis, E. hirae, and E. mundtii, were susceptible to amoxicillin/clavulanic acid and vancomycin, but showed high frequencies of resistance to oxacillin (92.8%), clindamycin (82.1%), tetracycline (64.3%), and erythromycin (48.8%). Resistance rates to florfenicol (17.9%), penicillin (6.0%), ciprofloxacin (3.6%), levofloxacin (1.2%), and ampicillin (1.2%) were low. Only one high-level streptomycin resistant E. faecium isolate and one high-level gentamicin resistant E. faecium isolate were observed. Approximately 20% and 70% of E. coli and Enterococcus isolates, respectively, were defined as multidrug-resistant.
In this study, E. coli and Enterococcus isolated from free-ranging Tibetan pigs showed relatively lower resistance rates than those in other areas of China, where more intensive farming practices are used. These results also revealed that free-range husbandry and absence of antibiotic use could decrease the occurrence of antimicrobial resistance to some extent.
Journal Article
PLK3 facilitates replication of swine influenza virus by phosphorylating viral NP protein
2023
Swine H1N1/2009 influenza is a highly infectious respiratory disease in pigs, which poses a great threat to pig production and human health. In this study, we investigated the global expression profiling of swine-encoded genes in response to swine H1N1/2009 influenza A virus (SIV-H1N1/2009) in newborn pig trachea (NPTr) cells. In total, 166 genes were found to be differentially expressed (DE) according to the gene microarray. After analyzing the DE genes which might affect the SIV-H1N1/2009 replication, we focused on polo-like kinase 3 (PLK3). PLK3 is a member of the PLK family, which is a highly conserved serine/threonine kinase in eukaryotes and well known for its role in the regulation of cell cycle and cell division. We validated that the expression of PLK3 was upregulated after SIV-H1N1/2009 infection. Additionally, PLK3 was found to interact with viral nucleoprotein (NP), significantly increased NP phosphorylation and oligomerization, and promoted viral ribonucleoprotein assembly and replication. Furthermore, we identified serine 482 (S482) as the phosphorylated residue on NP by PLK3. The phosphorylation of S482 regulated NP oligomerization, viral polymerase activity and growth. Our findings provide further insights for understanding the replication of influenza A virus.
Journal Article
First Specific Detection of Mammalian Orthoreovirus from Goats Using TaqMan Real-Time RT-PCR Technology
2024
Mammalian orthoreovirus (MRV) infections are ubiquitous in multiple mammalian species including humans, and mainly causes gastroenteritis and respiratory disease. In this study, we developed a rapid and sensitive TaqMan qRT-PCR method for MRV detection based on the primers and probe designed within the conserved L1 gene. The qRT-PCR assay was evaluated for its sensitivity, specificity, efficiency and reproducibility. It was found that the detection sensitivity was equivalent to 10 DNA copies/μL, and the standard curves had a linear correlation of R2 = 0.998 with an amplification efficiency of 99.6%. The inter- and intra-assay coefficients of variation (CV%) were in the range of 0.29% to 2.16% and 1.60% to 3.60%, respectively. The primer sets specifically amplified their respective MRV segments and had the highest detection sensitivities of 100.25 TCID50/mL with amplification efficiencies of 99.5% (R2 = 0.999). qRT-PCR was used for MRV detection from samples of sheep, goats, and calves from four regions in China, and the overall MRV prevalence was 8.2% (35/429), whereas 17/429 (4.0%) were detected by RT-PCR and 14/429 (3.3%) by virus isolation. The qRT-PCR assay showed significantly higher sensitivity than RT-PCR and virus isolation. Results from an epidemiological survey indicated that the positive rate of MRV in rectal swabs from sheep and goats tested in Shaanxi, Jiangsu, and Xinjiang were 9/80 (11.3%), 12/93 (12.9%) and 14/128 (10.9%), respectively. In goats and sheep, MRV prevalence was obviously associated with season and age, with a high positive rate of more than 8% during September to April and approximately 13% in small ruminant animals under two months of age. This is the first instance of MRV infection in sheep and goats in China, thus broadening our knowledge of MRV hosts. Consequently, primer optimization for qRT-PCR should not only prioritize amplification efficiency and specificity, but also sensitivity. This assay will contribute to more accurate and rapid MRV monitoring by epidemiological investigation, viral load, and vaccination efficacy.
Journal Article
Metagenomic analysis reveals high diversity of gut viromes in yaks (Bos grunniens) from the Qinghai-Tibet Plateau
by
Liu, Yuwei
,
Wang, Xiaochun
,
Zhao, Min
in
631/208/514/2254
,
631/326/2565/2134
,
631/326/596/2097
2024
The Qinghai-Tibet Plateau (QTP), renowned for its exceptional biological diversity, is home to numerous endemic species. However, research on the virology of vulnerable vertebrates like yaks remains limited. In this study, our objective was to use metagenomics to provide a comprehensive understanding of the diversity and evolution of the gut virome in yak populations across different regions of the QTP. Our findings revealed a remarkably diverse array of viruses in the gut of yaks, including those associated with vertebrates and bacteriophages. Notably, some vertebrate-associated viruses, such as astrovirus and picornavirus, showed significant sequence identity across diverse yak populations. Additionally, we observed differences in the functional profiles of genes carried by the yak gut virome across different regions. Moreover, the virus-bacterium symbiotic network that we discovered holds potential significance in maintaining the health of yaks. Overall, this research expands our understanding of the viral communities in the gut of yaks and highlights the importance of further investigating the interactions between viruses and their hosts. These data will be beneficial for revealing the crucial role that viruses play in the yak gut ecology in future studies.
A diverse range of viruses of the yak gut in Qinghai-Tibet Plateau is presented, showing significant sequence identity across regions. Also regional differences in gene function and significant virus-bacterium symbiotic networks were uncovered.
Journal Article