Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
164 result(s) for "Sur Mriganka"
Sort by:
Active control of arousal by a locus coeruleus GABAergic circuit
Arousal responses linked to locus coeruleus noradrenergic (LC-NA) activity affect cognition. However, the mechanisms that control modes of LC-NA activity remain unknown. Here, we reveal a local population of GABAergic neurons (LC-GABA) capable of modulating LC-NA activity and arousal. Retrograde tracing shows that inputs to LC-GABA and LC-NA neurons arise from similar regions, though a few regions provide differential inputs to one subtype over the other. Recordings in the locus coeruleus demonstrate two modes of LC-GABA responses whereby spiking is either correlated or broadly anticorrelated with LC-NA responses, reflecting anatomically similar and functionally coincident inputs, or differential and non-coincident inputs, to LC-NA and LC-GABA neurons. Coincident inputs control the gain of LC-NA-mediated arousal responses, whereas non-coincident inputs, such as from the prefrontal cortex to the locus coeruleus, alter global arousal levels. These findings demonstrate distinct modes by which an inhibitory locus coeruleus circuit regulates arousal in the brain.The authors describe a local population of GABAergic neurons that directly inhibits locus coeruleus noradrenergic neurons. They show how this circuit regulates arousal gain and tone.
The role of GABAergic signalling in neurodevelopmental disorders
GABAergic inhibition shapes the connectivity, activity and plasticity of the brain. A series of exciting new discoveries provides compelling evidence that disruptions in a number of key facets of GABAergic inhibition have critical roles in the aetiology of neurodevelopmental disorders (NDDs). These facets include the generation, migration and survival of GABAergic neurons, the formation of GABAergic synapses and circuit connectivity, and the dynamic regulation of the efficacy of GABAergic signalling through neuronal chloride transporters. In this Review, we discuss recent work that elucidates the functions and dysfunctions of GABAergic signalling in health and disease, that uncovers the contribution of GABAergic neural circuit dysfunction to NDD aetiology and that leverages such mechanistic insights to advance precision medicine for the treatment of NDDs.Dysfunctional GABAergic signalling is common to various neurodevelopmental disorders (NDDs). Tang, Jaenisch and Sur give an overview of the contribution of GABA signalling dysfunction to NDD aetiology and examine how mechanistic insights into such disruption can be used to advance treatments for NDDs.
Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders
When the brain does not develop normally, the disabilities that ensue can affect a person for life. Sahin and Sur review how emerging knowledge of the molecular biology behind a suite of neurodevelopmental disorders is shedding light on the group as a whole. The new knowledge offers tantalizing leads toward more effective therapies. Science , this issue p. 10.1126/science.aab3897 Research in the genetics of neurodevelopmental disorders such as autism suggests that several hundred genes are likely risk factors for these disorders. This heterogeneity presents a challenge and an opportunity at the same time. Although the exact identity of many of the genes remains to be discovered, genes identified to date encode proteins that play roles in certain conserved pathways: protein synthesis, transcriptional and epigenetic regulation, and synaptic signaling. The next generation of research in neurodevelopmental disorders must address the neural circuitry underlying the behavioral symptoms and comorbidities, the cell types playing critical roles in these circuits, and common intercellular signaling pathways that link diverse genes. Results from clinical trials have been mixed so far. Only when we can leverage the heterogeneity of neurodevelopmental disorders into precision medicine will the mechanism-based therapeutics for these disorders start to unlock success.
Functional imaging of visual cortical layers and subplate in awake mice with optimized three-photon microscopy
Two-photon microscopy is used to image neuronal activity, but has severe limitations for studying deeper cortical layers. Here, we developed a custom three-photon microscope optimized to image a vertical column of the cerebral cortex > 1 mm in depth in awake mice with low (<20 mW) average laser power. Our measurements of physiological responses and tissue-damage thresholds define pulse parameters and safety limits for damage-free three-photon imaging. We image functional visual responses of neurons expressing GCaMP6s across all layers of the primary visual cortex (V1) and in the subplate. These recordings reveal diverse visual selectivity in deep layers: layer 5 neurons are more broadly tuned to visual stimuli, whereas mean orientation selectivity of layer 6 neurons is slightly sharper, compared to neurons in other layers. Subplate neurons, located in the white matter below cortical layer 6 and characterized here for the first time, show low visual responsivity and broad orientation selectivity. Two-photon microscopy is a powerful tool for studying neuronal activity but cannot easily image deeper cortical layers. Here, the authors design a custom microscope for three-photon microscopy and use it to reveal response properties of layer 5, 6, and subplate visual cortical neurons.
Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions
Mapping specific sensory features to future motor actions is a crucial capability of mammalian nervous systems. We investigated the role of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping in mice during performance of a memory-guided visual discrimination task. Large-scale calcium imaging revealed that V1, PPC, and fMC neurons exhibited heterogeneous responses spanning all task epochs (stimulus, delay, response). Population analyses demonstrated unique encoding of stimulus identity and behavioral choice information across regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC multiplexing the two variables. Optogenetic inhibition during behavior revealed that all regions were necessary during the stimulus epoch, but only fMC was required during the delay and response epochs. Stimulus identity can thus be rapidly transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining the choice in memory prior to execution.
An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity
Cholinergic modulation of cortex powerfully influences information processing and brain states, causing robust desynchronization of local field potentials and strong decorrelation of responses between neurons. In this paper, the authors reveal a somatostatin-expressing inhibitory neuron-driven cortical circuit that mediates this change in the temporal structure of cortical dynamics. Cholinergic modulation of cortex powerfully influences information processing and brain states, causing robust desynchronization of local field potentials and strong decorrelation of responses between neurons. We found that intracortical cholinergic inputs to mouse visual cortex specifically and differentially drive a defined cortical microcircuit: they facilitate somatostatin-expressing (SOM) inhibitory neurons that in turn inhibit parvalbumin-expressing inhibitory neurons and pyramidal neurons. Selective optogenetic inhibition of SOM responses blocked desynchronization and decorrelation, demonstrating that direct cholinergic activation of SOM neurons is necessary for this phenomenon. Optogenetic inhibition of vasoactive intestinal peptide-expressing neurons did not block desynchronization, despite these neurons being activated at high levels of cholinergic drive. Direct optogenetic SOM activation, independent of cholinergic modulation, was sufficient to induce desynchronization. Together, these findings demonstrate a mechanistic basis for temporal structure in cortical populations and the crucial role of neuromodulatory drive in specific inhibitory-excitatory circuits in actively shaping the dynamics of neuronal activity.
Locally coordinated synaptic plasticity of visual cortex neurons in vivo
Activation of a neuronal pathway is often associated with inhibition of surrounding pathways. How locally coordinated synaptic plasticity occurs in vivo is not known, nor is its role in shaping neuronal responses. El-Boustani et al. paired optogenetic stimulation of single neurons with a visual input and were able to shift the neuron's receptive field toward the target location. Spines that expressed structural long-term potentiation had receptive fields overlapping the target stimulus but were surrounded by spines that expressed receptive fields away from the target. Science , this issue p. 1349 Arc-mediated local synaptic plasticity reorganizes responses on dendrites to mediate functional neuronal plasticity in vivo. Plasticity of cortical responses in vivo involves activity-dependent changes at synapses, but the manner in which different forms of synaptic plasticity act together to create functional changes in neurons remains unknown. We found that spike timing–induced receptive field plasticity of visual cortex neurons in mice is anchored by increases in the synaptic strength of identified spines. This is accompanied by a decrease in the strength of adjacent spines on a slower time scale. The locally coordinated potentiation and depression of spines involves prominent AMPA receptor redistribution via targeted expression of the immediate early gene product Arc. Hebbian strengthening of activated synapses and heterosynaptic weakening of adjacent synapses thus cooperatively orchestrate cell-wide plasticity of functional neuronal responses.
In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9
CRISPR-Cas9 can be used to edit both single and multiple genes in postmitotic neurons in adult mice enabling rapid assessment of gene functions in the brain. Probing gene function in the mammalian brain can be greatly assisted with methods to manipulate the genome of neurons in vivo . The clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated endonuclease (Cas)9 from Streptococcus pyogenes (SpCas9) 1 can be used to edit single or multiple genes in replicating eukaryotic cells, resulting in frame-shifting insertion/deletion (indel) mutations and subsequent protein depletion. Here, we delivered SpCas9 and guide RNAs using adeno-associated viral (AAV) vectors to target single ( Mecp2 ) as well as multiple genes ( Dnmt1 , Dnmt3a and Dnmt3b ) in the adult mouse brain in vivo . We characterized the effects of genome modifications in postmitotic neurons using biochemical, genetic, electrophysiological and behavioral readouts. Our results demonstrate that AAV-mediated SpCas9 genome editing can enable reverse genetic studies of gene function in the brain.
Locus Coeruleus Norepinephrine in Learned Behavior: Anatomical Modularity and Spatiotemporal Integration in Targets
The locus coeruleus (LC), a small brainstem nucleus, is the primary source of the neuromodulator norepinephrine (NE) in the brain. The LC receives input from widespread brain regions, and projects throughout the forebrain, brainstem, cerebellum, and spinal cord. LC neurons release NE to control arousal, but also in the context of a variety of sensory-motor and behavioral functions. Despite its brain-wide effects, much about the role of LC-NE in behavior and the circuits controlling LC activity is unknown. New evidence suggests that the modular input-output organization of the LC could enable transient, task-specific modulation of distinct brain regions. Future work must further assess whether this spatial modularity coincides with functional differences in LC-NE subpopulations acting at specific times, and how such spatiotemporal specificity might influence learned behaviors. Here, we summarize the state of the field and present new ideas on the role of LC-NE in learned behaviors.
Distinct prefrontal top-down circuits differentially modulate sensorimotor behavior
Sensorimotor behaviors require processing of behaviorally relevant sensory cues and the ability to select appropriate responses from a vast behavioral repertoire. Modulation by the prefrontal cortex (PFC) is thought to be key for both processes, but the precise role of specific circuits remains unclear. We examined the sensorimotor function of anatomically distinct outputs from a subdivision of the mouse PFC, the anterior cingulate cortex (ACC). Using a visually guided two-choice behavioral paradigm with multiple cue-response mappings, we dissociated the sensory and motor response components of sensorimotor control. Projection-specific two-photon calcium imaging and optogenetic manipulations show that ACC outputs to the superior colliculus, a key midbrain structure for response selection, principally coordinate specific motor responses. Importantly, ACC outputs exert control by reducing the innate response bias of the superior colliculus. In contrast, ACC outputs to the visual cortex facilitate sensory processing of visual cues. Our results ascribe motor and sensory roles to ACC projections to the superior colliculus and the visual cortex and demonstrate for the first time a circuit motif for PFC function wherein anatomically non-overlapping output pathways coordinate complementary but distinct aspects of visual sensorimotor behavior. The neural circuit mechanisms for sensorimotor control by the prefrontal cortex (PFC) are unclear. Here, the authors show that PFC outputs to the visual cortex and superior colliculus respectively facilitate sensory processing and action selection, allowing the PFC to independently control complementary but distinct behavioral functions.