Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
56 result(s) for "Surti, Urvashi"
Sort by:
Resolving the complexity of the human genome using single-molecule sequencing
Single-molecule, real-time DNA sequencing is used to analyse a haploid human genome (CHM1), thus closing or extending more than half of the remaining 164 euchromatic gaps in the human genome; the complete sequences of euchromatic structural variants (including inversions, complex insertions and tandem repeats) are resolved at the base-pair level, suggesting that a greater complexity of the human genome can now be accessed. Deep-sequencing the human genome The human genome is considered sequenced, yet more than 160 euchromatic gaps remain and many aspects of its structural variation are poorly understood. Evan Eichler and colleagues sequenced and analysed a haploid human genome (CHM1) using single-molecule, real-time (SMRT) DNA sequencing and by doing so closed — or in some cases extended — more than half of the remaining gaps. They also resolved the complete sequence of numerous euchromatic structural variants at the base-pair level, revealing inversions, complex insertions and long tracts of tandem repeats, some of them previously unknown. Thanks to the longer-read sequencing technology applied here, the complexity of the human genome that stems from variation of longer and more complex repetitive DNA can now be largely resolved. The human genome is arguably the most complete mammalian reference assembly 1 , 2 , 3 , yet more than 160 euchromatic gaps remain 4 , 5 , 6 and aspects of its structural variation remain poorly understood ten years after its completion 7 , 8 , 9 . To identify missing sequence and genetic variation, here we sequence and analyse a haploid human genome (CHM1) using single-molecule, real-time DNA sequencing 10 . We close or extend 55% of the remaining interstitial gaps in the human GRCh37 reference genome—78% of which carried long runs of degenerate short tandem repeats, often several kilobases in length, embedded within (G+C)-rich genomic regions. We resolve the complete sequence of 26,079 euchromatic structural variants at the base-pair level, including inversions, complex insertions and long tracts of tandem repeats. Most have not been previously reported, with the greatest increases in sensitivity occurring for events less than 5 kilobases in size. Compared to the human reference, we find a significant insertional bias (3:1) in regions corresponding to complex insertions and long short tandem repeats. Our results suggest a greater complexity of the human genome in the form of variation of longer and more complex repetitive DNA that can now be largely resolved with the application of this longer-read sequencing technology.
Med12 gain-of-function mutation causes leiomyomas and genomic instability
Uterine leiomyomas are benign tumors that can cause pain, bleeding, and infertility in some women. Mediator complex subunit 12 (MED12) exon 2 variants are associated with uterine leiomyomas; however, the causality of MED12 variants, their genetic mode of action, and their role in genomic instability have not been established. Here, we generated a mouse model that conditionally expresses a Med12 missense variant (c.131G>A) in the uterus and demonstrated that this alteration alone promotes uterine leiomyoma formation and hyperplasia in both WT mice and animals harboring a uterine mesenchymal cell-specific Med12 deletion. Compared with WT animals, expression of Med12 c.131G>A in conditional Med12-KO mice resulted in earlier onset of leiomyoma lesions that were also greater in size. Moreover, leiomyomatous, Med12 c.131G>A variant-expressing uteri developed chromosomal rearrangements. Together, our results show that the common human leiomyoma-associated MED12 variant can cause leiomyomas in mice via a gain of function that drives genomic instability, which is frequently observed in human leiomyomas.
Whole Exome Sequencing in a Random Sample of North American Women with Leiomyomas Identifies MED12 Mutations in Majority of Uterine Leiomyomas
Uterine leiomyomas (uterine fibroids) arise from smooth muscle tissue in the majority of women by age 45. It is common for these clonal tumors to develop from multiple locations within the uterus, leading to a variety of symptoms such as pelvic pain, abnormal uterine bleeding, and infertility. We performed whole exome sequencing on genomic DNA from five pairs of leiomyomas and corresponding normal myometrium to determine genetic variations unique to leiomyomas. Whole exome sequencing revealed that the gene encoding transcription factor MED12 (Mediator complex subunit 12) harbored heterozygous missense mutations caused by single nucleotide variants in highly conserved codon 44 of exon 2 in two of five leiomyomas. Sanger re-sequencing of MED12 among these five leiomyomas confirmed the two single nucleotide variants and detected a 42 base-pair deletion within exon 2 of MED12 in a third leiomyoma. MED12 was sequenced in an additional 143 leiomyomas and 73 normal myometrial tissues. Overall, MED12 was mutated in 100/148 (67%) of the genotyped leiomyomas: 79/148 (53%) leiomyomas exhibited heterozygous missense single nucleotide variants, 17/148 (11%) leiomyomas exhibited heterozygous in-frame deletions/insertion-deletions, 2/148 (1%) leiomyomas exhibited intronic heterozygous single nucleotide variants affecting splicing, and 2/148 (1%) leiomyomas exhibited heterozygous deletions/insertion-deletions spanning the intron 1-exon 2 boundary which affected the splice acceptor site. Mutations were not detected in MED12 in normal myometrial tissue. MED12 mutations were equally distributed among karyotypically normal and abnormal uterine leiomyomas and were identified in leiomyomas from both black and white American women. Our studies show an association between MED12 mutations and leiomyomas in ethnically and racially diverse American women.
Reproductive outcomes in individuals with chromosomal reciprocal translocations
Purpose Patients with reciprocal balanced translocations (RBT) have a risk for recurrent pregnancy losses (RPL), affected child, and infertility. Currently, genetic counseling is based on karyotypes found among the products of conception (POC), although factors influencing the success of assisted reproductive technologies (ART) in RBT couples are not established. Methods Cytogenetic results from 261 POC and offspring of the parents (113 women and 90 men) with RBT were evaluated. Chromosome segregation modes and number of euploid embryos were assessed in couples undergoing in vitro fertilization. Results Patients with translocations involving an acrocentric chromosome have a higher risk of unbalanced gametes caused by a 3:1 segregation. Female RBT patients have a statistically higher risk of aneuploidy due to an interchromosomal effect. The rate of euploid embryos is low due to meiosis I malsegregation of RBT, meiosis II nondisjunction, additional whole chromosome or segmental aneusomies. RBT patients with RPL have a higher rate of miscarriage of euploid fetuses with RBT. Conclusion Chromosome-specific factors, female gender, age, and history of RPL are the risk elements influencing pregnancy and in vitro fertilization success in RBT patients. Chromosomal microarray analysis of POC is necessary to provide an accurate and timely diagnosis for patients with adverse reproductive outcomes.
Noninvasive Prenatal Diagnosis of a Fetal Microdeletion Syndrome
This proof-of-principle study shows that it is possible to detect a genetic microdeletion carried by a fetus through analysis of DNA in circulating maternal blood. To the Editor: The definitive diagnosis of fetal aneuploidy and genomic imbalances requires invasive collection of fetal cells through amniocentesis or chorionic villus sampling. These methods are associated with fetal loss and parental anxiety. Analyses of DNA in maternal plasma have shown the potential for noninvasive diagnosis of common aneuploidies. 1 A couple presented for prenatal genetic counseling at the Magee–Womens Hospital of the University of Pittsburgh Medical Center. They had previously had a child with developmental delay and dysmorphic features in whom a paternally inherited 4.2-Mb deletion on chromosome 12 between bands 12p11.22 and 12p12.1 had been diagnosed (Figure 1A). . . .
Comprehensive analysis of 204 sporadic hydatidiform moles: revisiting risk factors and their correlations with the molar genotypes
Hydatidiform mole (HM) is an aberrant human pregnancy characterized by excessive trophoblastic proliferation and abnormal embryonic development. HM has two morphological types, complete (CHM) and partial (PHM), and non-recurrent ones have three genotypic types, androgenetic monospermic, androgenetic dispermic, and triploid dispermic. Most available studies on risk factors predisposing to different types of HM and their malignant transformation mainly suffer from the lack of comprehensive genotypic analysis of large cohorts of molar tissues combined with accurate postmolar hCG follow-up. Moreover, 10–20% of patients with one HM have at least one non-molar miscarriage, which is higher than the frequency of two pregnancy losses in the general population (2–5%), suggesting a common genetic susceptibility to HM and miscarriages. However, the underlying causes of the miscarriages in these patients are unknown. Here, we comprehensively analyzed 204 HM, mostly from patients referred to the Quebec Registry of Trophoblastic Diseases and for which postmolar hCG monitoring is available, and 30 of their non-molar miscarriages. We revisited the risk of maternal age and neoplastic transformation across the different HM genotypic categories and investigated the presence of chromosomal abnormalities in their non-molar miscarriages. We confirm that androgenetic CHM is more prone to gestational trophoblastic neoplasia (GTN) than triploid dispermic PHM, and androgenetic dispermic CHM is more prone to high-risk GTN and choriocarcinoma (CC) than androgenetic monospermic CHM. We also confirm the association between increased maternal age and androgenetic CHM and their malignancies. Most importantly, we demonstrate for the first time that patients with an HM and miscarriages are at higher risk for aneuploid miscarriages [83.3%, 95% confidence interval (CI): 0.653–0.944] than women with sporadic (51.5%, 95% CI: 50.3–52.7%, p value = 0.0003828) or recurrent miscarriages (43.8%, 95% CI: 40.7–47.0%, p value = 0.00002). Our data suggest common genetic female germline defects predisposing to HM and aneuploid non-molar miscarriages in some patients.
Phenotypic association of 15q11.2 CNVs of the region of breakpoints 1–2 (BP1–BP2) in a large cohort of samples referred for genetic diagnosis
In view of conflicting reports on the pathogenicity of 15q11.2 CNVs of the breakpoints 1-2 (BP1-BP2) region and lack of association with a specific phenotype, we collected phenotypic data on 51,462 patients referred for genetic testing at two centers (Magee-Womens Hospital of UPMC and Baylor Genetics Laboratories, Baylor College of Medicine). Using array CGH, 262 patients with deletions and 215 with duplications were identified and tested for their association with four phenotypes (developmental delay, dysmorphic features, autism group of disorders, and epilepsy/seizures). Only association of deletions with dysmorphic features was observed (P = 0.013) with low penetrance (3.8%). Our results, viewed in the context of other reports suggesting the lack of a clear phenotypic outcome, underscore the need for detailed phenotypic studies to better understand the pathogenicity of 15q11.2 (BP1-BP2) CNVs.
High-resolution human genome structure by single-molecule analysis
Variation in genome structure is an important source of human genetic polymorphism: It affects a large proportion of the genome and has a variety of phenotypic consequences relevant to health and disease. In spite of this, human genome structure variation is incompletely characterized due to a lack of approaches for discovering a broad range of structural variants in a global, comprehensive fashion. We addressed this gap with Optical Mapping, a high-throughput, high-resolution single-molecule system for studying genome structure. We used Optical Mapping to create genome-wide restriction maps of a complete hydatidiform mole and three lymphoblast-derived cell lines, and we validated the approach by demonstrating a strong concordance with existing methods. We also describe thousands of new variants with sizes ranging from kb to Mb.
A novel NLRP7 protein-truncating mutation associated with discordant and divergent p57 immunostaining in diploid biparental and triploid digynic moles
NLRP7 is a maternal-effect gene that has a primary role in the oocyte. Its biallelic mutations are a major cause for recurrent diploid biparental hydatidiform moles (HMs). Here, we describe the full characterization of four HMs from a patient with a novel homozygous protein-truncating mutation in NLRP7. We found that some HMs have features of both complete and partial moles. Two HMs expressed p57 in the cytotrophoblast and stromal cells and exhibited divergent and discordant immunostaining. Microsatellite DNA-genotyping demonstrated that two HMs are diploid biparental and one is triploid digynic due to the failure of meiosis II. FISH analysis demonstrated triploidy in the cytotrophoblast and stromal cells in all villi. Our data highlight the atypical features of HM from patients with recessive NLRP7 mutations and the important relationship between NLRP7 defects in the oocyte and p57 expression that appear to be the main contributor to the molar phenotype regardless of the zygote genotype.
CNTN6 copy number variations in 14 patients: a possible candidate gene for neurodevelopmental and neuropsychiatric disorders
Background Neurodevelopmental disorders are impairments of brain function that affect emotion, learning, and memory. Copy number variations of contactin genes ( CNTNs ), including CNTN3 , CNTN4 , CNTN5 , and CNTN6 , have been suggested to be associated with these disorders. However, phenotypes have been reported in only a handful of patients with copy number variations involving CNTNs . Methods From January 2009 to January 2013, 3724 patients ascertained through the University of Pittsburgh Medical Center were referred to our laboratory for clinical array comparative genomic hybridization testing. We screened this cohort of patients to identify individuals with the 3p26.3 copy number variations involving the CNTN6 gene, and then retrospectively reviewed the clinical information and family history of these patients to determine the association between the 3p26.3 copy number variations and neurodevelopmental disorders. Results Fourteen of the 3724 patients had 3p26.3 copy number variations involving the CNTN6 gene. Thirteen of the 14 patients with these CNTN6 copy number variations presented with various neurodevelopmental disorders including developmental delay, autistic spectrum disorders, seizures and attention deficit hyperactivity disorder. Family history was available for 13 of the 14 patients. Twelve of the thirteen families have multiple members with neurodevelopmental and neuropsychiatric disorders including attention deficit hyperactivity disorder, seizures, autism spectrum disorder, intellectual disability, schizophrenia, depression, anxiety, learning disability, and bipolar disorder. Conclusions Our findings suggest that deletion or duplication of the CNTN6 gene is associated with a wide spectrum of neurodevelopmental behavioral disorders.