Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
100
result(s) for
"Sutter, Gerd"
Sort by:
Multi-omics characterization of the monkeypox virus infection
2024
Multiple omics analyzes of Vaccinia virus (VACV) infection have defined molecular characteristics of poxvirus biology. However, little is known about the monkeypox (mpox) virus (MPXV) in humans, which has a different disease manifestation despite its high sequence similarity to VACV. Here, we perform an in-depth multi-omics analysis of the transcriptome, proteome, and phosphoproteome signatures of MPXV-infected primary human fibroblasts to gain insights into the virus-host interplay. In addition to expected perturbations of immune-related pathways, we uncover regulation of the HIPPO and TGF-β pathways. We identify dynamic phosphorylation of both host and viral proteins, which suggests that MAPKs are key regulators of differential phosphorylation in MPXV-infected cells. Among the viral proteins, we find dynamic phosphorylation of H5 that influenced the binding of H5 to dsDNA. Our extensive dataset highlights signaling events and hotspots perturbed by MPXV, extending the current knowledge on poxviruses. We use integrated pathway analysis and drug-target prediction approaches to identify potential drug targets that affect virus growth. Functionally, we exemplify the utility of this approach by identifying inhibitors of MTOR, CHUK/IKBKB, and splicing factor kinases with potent antiviral efficacy against MPXV and VACV.
Multi-omics profiling of monkeypox virus infected human primary cells was used to characterize the infection process and to prioritize potential antiviral drug targets.
Journal Article
Full genome characterization of porcine circovirus type 3 isolates reveals the existence of two distinct groups of virus strains
2018
Background
The occurrence of the novel porcine circovirus type 3 (PCV3) was reported from the Americas, Asia and Europe. Although this virus was detected in association with various clinical syndromes in pigs, its role as possible swine pathogen remains unclear. PCV3 was detected with high prevalence in Polish farms, but to date no genome sequences were available from European PCV3 strains.
Methods
We collected 1060 serum samples from piglets at the age of 20–24 weeks from 53 farms distributed all over Germany. PCV3 DNA was detected using a real-time PCR and subsequently complete PCV3 genome sequences were obtained after multiply primed rolling circle amplification and sequencing of overlapping PCR products. Phylogenetic analysis was performed by neighbor-joining method and maximum likelihood method.
Results
We obtained 15 complete PCV3 genome sequences as well as nine partial sequences including the putative ORFs 1, 2 and 3 from PCV3 viremic animals in German pig farms. Phylogenetic analysis of these German as well as 30 full genome sequences received from GenBank divided the PCV3 strains into two main groups and several subclusters. Furthermore, we were able to define group specific amino acid patterns in open reading frame 1 and 2.
Conclusion
PCV3 is distributed with high prevalence in German pig industry. Phylogenetic analysis revealed two clearly separated groups of PCV3 strains, which might be considered as PCV3 genotypes. Specific nucleotide and amino acid marker positions may serve for easy and fast intraspecies classification and genotyping of PCV3 strains. No correlation between PCV3 variants with their geographical origin was evident. We found the same diversity of PCV3 strains in Germany as in other countries. We hypothesize that PCV3 is not a newly emerging virus in the German pig population. Future studies will have to show, if PCV3 genotype specific biological properties are evident.
Journal Article
Combating COVID-19: MVA Vector Vaccines Applied to the Respiratory Tract as Promising Approach Toward Protective Immunity in the Lung
by
Fleige, Henrike
,
Sutter, Gerd
,
Förster, Reinhold
in
Administration, Mucosal
,
Aerosols
,
Animals
2020
The lung is the vital target organ of coronavirus disease 2019 (COVID-19) caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the majority of patients the most active virus replication seems to be found in the upper respiratory tract, severe cases however suffer from SARS-like disease associated with virus replication in lung tissues. Due to the current lack of suitable anti-viral drugs the induction of protective immunity such as neutralizing antibodies in the lung is the key aim of the only alternative approach-the development and application of SARS-CoV-2 vaccines. However, past experience from experimental animals, livestock, and humans showed that induction of immunity in the lung is limited following application of vaccines at peripheral sides such as skin or muscles. Based on several considerations we therefore propose here to consider the application of a Modified Vaccinia virus Ankara (MVA)-based vaccine to mucosal surfaces of the respiratory tract as a favorable approach to combat COVID-19.
Journal Article
CD8+ T Cells Responding to the Middle East Respiratory Syndrome Coronavirus Nucleocapsid Protein Delivered by Vaccinia Virus MVA in Mice
2018
Middle East respiratory syndrome coronavirus (MERS-CoV), a novel infectious agent causing severe respiratory disease and death in humans, was first described in 2012. Antibodies directed against the MERS-CoV spike (S) protein are thought to play a major role in controlling MERS-CoV infection and in mediating vaccine-induced protective immunity. In contrast, relatively little is known about the role of T cell responses and the antigenic targets of MERS-CoV that are recognized by CD8+ T cells. In this study, the highly conserved MERS-CoV nucleocapsid (N) protein served as a target immunogen to elicit MERS-CoV-specific cellular immune responses. Modified Vaccinia virus Ankara (MVA), a safety-tested strain of vaccinia virus for preclinical and clinical vaccine research, was used for generating MVA-MERS-N expressing recombinant N protein. Overlapping peptides spanning the whole MERS-CoV N polypeptide were used to identify major histocompatibility complex class I/II-restricted T cell responses in BALB/c mice immunized with MVA-MERS-N. We have identified a H2-d restricted decamer peptide epitope in the MERS-N protein with CD8+ T cell antigenicity. The identification of this epitope, and the availability of the MVA-MERS-N candidate vaccine, will help to evaluate MERS-N-specific immune responses and the potential immune correlates of vaccine-mediated protection in the appropriate murine models of MERS-CoV infection.
Journal Article
Tick-Borne Encephalitis Virus: A Quest for Better Vaccines against a Virus on the Rise
2020
Tick-borne encephalitis virus (TBEV), a member of the family Flaviviridae, is one of the most important tick-transmitted viruses in Europe and Asia. Being a neurotropic virus, TBEV causes infection of the central nervous system, leading to various (permanent) neurological disorders summarized as tick-borne encephalitis (TBE). The incidence of TBE cases has increased due to the expansion of TBEV and its vectors. Since antiviral treatment is lacking, vaccination against TBEV is the most important protective measure. However, vaccination coverage is relatively low and immunogenicity of the currently available vaccines is limited, which may account for the vaccine failures that are observed. Understanding the TBEV-specific correlates of protection is of pivotal importance for developing novel and improved TBEV vaccines. For affording robust protection against infection and development of TBE, vaccines should induce both humoral and cellular immunity. In this review, the adaptive immunity induced upon TBEV infection and vaccination as well as novel approaches to produce improved TBEV vaccines are discussed.
Journal Article
Design and evaluation of a poly-epitope based vaccine for the induction of influenza A virus cross-reactive CD8 + T cell responses
by
Engels, Leoni
,
Osterhaus, Albert D. M. E.
,
Rimmelzwaan, Guus F.
in
631/326/590/2030
,
631/326/596/1578
,
Animals
2025
The availability of influenza vaccines that can induce broadly protective immune responses is highly desirable and could also mitigate the impact of future influenza pandemics. Ideally, these vaccines also induce virus-specific CD8 + T cells, which have been identified as an independent correlate of protection. In the present study, we explored the use of an artificial immunogen that comprises of twenty highly conserved influenza virus CD8 + T cell epitopes with an HLA coverage of 99.5% of the world population. The highly attenuated viral vector Modified Vaccinia virus Ankara (MVA) was used to deliver the artificial poly-epitope sequence (rMVA-PE) and by using T cell lines raised against individual epitopes, we confirmed that the epitopes are liberated from the artificial immunogen. For efficient antigen processing and presentation, the epitopes were separated by spacer sequences. Stimulation of peripheral blood mononuclear cells of HLA-typed blood donors with rMVA-PE resulted in the activation of influenza virus-specific T cell responses. Furthermore, immunization of humanized HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice (HLA-A*02:01) with rMVA-PE induced influenza virus-specific CD8 + T cell responses. Thus, rMVA-PE proved to be immunogenic both in vitro and in vivo and constitutes a promising vaccine candidate for the induction of cross-reactive CD8 + T cell responses that could afford protection against antigenically distinct influenza A viruses (IAV) of various subtypes and species, and is currently considered for further clinical testing.
Journal Article
Discriminating the eight genotypes of the porcine circovirus type 2 with TaqMan-based real-time PCR
by
Eddicks, Matthias
,
Nan, Liangliang
,
Ritzmann, Mathias
in
Animals
,
Biomedical and Life Sciences
,
Biomedicine
2021
Background
The porcine circovirus type 2 (PCV2) is divided into eight genotypes including the previously described genotypes PCV2a to PCV2f and the two new genotypes PCV2g and PCV2h. PCV2 genotyping has become an important task in molecular epidemiology and to advance research on the prophylaxis and pathogenesis of PCV2 associated diseases. Standard genotyping of PCV2 is based on the sequencing of the viral genome or at least of the open reading frame 2. Although, the circovirus genome is small, classical sequencing is time consuming, expensive, less sensitive and less compatible with mass testing compared with modern real-time PCR assays. Here we report about a new PCV2 genotyping method using qPCR.
Methods
Based on the analysis of several hundred PCV2 full genome sequences, we identified PCV2 genotype specific sequences or single-nucleotide polymorphisms. We designed six TaqMan PCR assays that are specific for single genotypes PCV2a to PCV2f and two qPCRs targeting two genotypes simultaneously (PCV2g/PCV2d and PCV2h/PCV2c). To improve specific binding of oligonucleotide primers and TaqMan probes, we used locked nucleic acid technology. We evaluated amplification efficiency, diagnostic sensitivity and tested assay specificity for the respective genotypes.
Results
All eight PCV2 genotype specific qPCRs demonstrated appropriate amplification efficiencies between 91 and 97%. Testing samples from an epidemiological field study demonstrated a diagnostic sensitivity of the respective genotype specific qPCR that was comparable to a highly sensitive pan-PCV2 qPCR system. Genotype specificity of most qPCRs was excellent. Limited unspecific signals were obtained when a high viral load of PCV2b was tested with qPCRs targeting PCV2d or PCV2g. The same was true for the PCV2a specific qPCR when high copy numbers of PCV2d were tested. The qPCR targeting PCV2h/PCV2c showed some minor cross-reaction with PCV2d, PCV2f and PCV2g.
Conclusion
Genotyping of PCV2 is important for routine diagnosis as well as for epidemiological studies. The introduced genotyping qPCR system is ideal for mass testing and should be a valuable complement to PCV2 sequencing, especially in the case of simultaneous infections with multiple PCV2 genotypes, subclinically infected animals or research studies that require large sample numbers.
Journal Article
MERS-CoV‒Specific T-Cell Responses in Camels after Single MVA-MERS-S Vaccination
by
Rodriguez, Marina
,
Meyer zu Natrup, Christian
,
Schünemann, Lisa-Marie
in
Animals
,
Antibodies
,
Antibodies, Viral
2023
We developed an ELISPOT assay for evaluating Middle East respiratory syndrome coronavirus (MERS-CoV)‒specific T-cell responses in dromedary camels. After single modified vaccinia virus Ankara-MERS-S vaccination, seropositive camels showed increased levels of MERS-CoV‒specific T cells and antibodies, indicating suitability of camel vaccinations in disease-endemic areas as a promising approach to control infection.
Journal Article
Prolonged SARS-CoV-2 RNA Shedding from Therapy Cat after Cluster Outbreak in Retirement Home
2021
We report a therapy cat in a nursing home in Germany infected with severe acute respiratory syndrome coronavirus 2 during a cluster outbreak in the home residents. Although we confirmed prolonged presence of virus RNA in the asymptomatic cat, genome sequencing showed no further role of the cat in human infections on site.
Journal Article
A Toll-like receptor–independent antiviral response induced by double-stranded B-form DNA
by
Ludwig, Holger
,
Hemmi, Hiroaki
,
Kawai, Taro
in
Adaptor Proteins, Signal Transducing - metabolism
,
Animals
,
Biomedical and Life Sciences
2006
The innate immune system recognizes nucleic acids during infection or tissue damage; however, the mechanisms of intracellular recognition of DNA have not been fully elucidated. Here we show that intracellular administration of double-stranded B-form DNA (B-DNA) triggered antiviral responses including production of type I interferons and chemokines independently of Toll-like receptors or the helicase RIG-I. B-DNA activated transcription factor IRF3 and the promoter of the gene encoding interferon-β through a signaling pathway that required the kinases TBK1 and IKKi, whereas there was substantial activation of transcription factor NF-κB independent of both TBK and IKKi. IPS-1, an adaptor molecule linking RIG-I and TBK1, was involved in B-DNA-induced activation of interferon-β and NF-κB. B-DNA signaling by this pathway conferred resistance to viral infection in a way dependent on both TBK1 and IKKi. These results suggest that both TBK1 and IKKi are required for innate immune activation by B-DNA, which might be important in antiviral innate immunity and other DNA-associated immune disorders.
*Note: In the version of this article initially published, the GEO database accession number is missing. This should be the final subsection of Methods, as follows: code. GEO: microarray data, GSE4171. The error has been corrected in the PDF version of the article.
Journal Article