Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Suwal, Newton"
Sort by:
Predicting Motif-Mediated Interactions Based on Viral Genomic Composition
Viruses manipulate host cellular machinery to propagate their life cycle, with one key strategy being the mimicry of short linear motifs (SLiMs) found in host proteins. While databases continue to expand with virus–host protein–protein interaction (vhPPI) data, accurately predicting viral mimicry remains challenging due to the inherent degeneracy of SLiMs. In this study, we investigate how viral genomic composition influences motif mimicry and the mechanisms through which viruses hijack host cellular functions. We assessed domain–motif interaction (DMI) enrichment differences, and also predicted new DMIs based on known viral motifs with varying stringency levels, using SLiMEnrich v.1.5.1. Our findings reveal that dsDNA viruses capture significantly more known DMIs compared to other viral groups, with dsRNA viruses also exhibiting higher DMI enrichment than ssRNA viruses. Additionally, we identified new vhPPIs mediated via SLiMs, particularly within different viral genomic contexts. Understanding these interactions is vital for elucidating viral strategies to hijack host functions, which could inform the development of targeted antiviral therapies.