Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Swacha, Grzegorz"
Sort by:
The effect of abandonment on vegetation composition and soil properties in Molinion meadows (SW Poland)
Intermittently wet meadows of the Molinion alliance, as with many other grasslands of high-nature value, have become increasingly exposed to abandonment due to their low economic value. The potential consequences of land abandonment are the decrease in species diversity and environmental alterations. The issue of land-use induced changes in plant species composition and soil physico-chemical parameters have been rarely studied in species-rich intermittently wet grasslands. In this study we attempt to i) to identify determinants of plant species composition patterns and ii) to investigate the effect of cessation of mowing on vegetation composition and soil properties. The study was conducted in an area of 36 ha covered with Molinion meadows, comprising of mown sites and sites that were left unmown for 10 years. In total, 120 and 80 vegetation plots were sampled from mown and unmown sites, respectively. In these plots we measured plant community composition and soil physico-chemical parameters. The results have shown that the two groups of variables (soil properties and management) differ considerably in their ability to explain variation in plant species data. Soil variables explained four-fold more variation in plant species composition than management did. The content of soil organic matter, moisture, total nitrogen and exchangeable forms of potassium, calcium and magnesium were significantly higher in mown than in unmown grassland systems. The results revealed that soil organic matter was the component of the soil most strongly affected by management, followed by moisture, magnesium, calcium and potassium in that order. Each of these soil parameters was negatively correlated with the abundances of woody plants and invasive species. We concluded that low-intensity, late time of mowing is suitable grassland management practice to ensure high plant species diversity and sustainability of the grassland ecological system while cessation of mowing not only lead to reduced plant species richness and diversity, but also to reduced nutrient levels in grassland soils.
Alpha diversity of vascular plants in European forests
Aim The former continental‐scale studies modelled coarse‐grained plant species‐richness patterns (gamma diversity). Here we aim to refine this information for European forests by (a) modelling the number of vascular plant species that co‐occur in local communities (alpha diversity) within spatial units of 400 m2; and (b) assessing the factors likely determining the observed spatial patterns in alpha diversity. Location Europe roughly within 12°W–30°E and 35–60°N. Taxon Vascular plants. Methods The numbers of co‐occurring vascular plant species were counted in 73,134 georeferenced vegetation plots. Each plot was classified by an expert system into deciduous broadleaf, coniferous or sclerophyllous forest. Random Forest models were used to map and explain spatial patterns in alpha diversity for each forest type separately using 19 environmental, land‐use and historical variables. Results Our models explained from 51.0% to 70.9% of the variation in forest alpha diversity. The modelled alpha‐diversity pattern was dominated by a marked gradient from species‐poor north‐western to species‐rich south‐eastern Europe. The most prominent richness hotspots were identified in the Calcareous Alps and adjacent north‐western Dinarides, the Carpathian foothills in Romania and the Western Carpathians in Slovakia. Energy‐related factors, bedrock types and terrain ruggedness were identified as the main variables underlying the observed richness patterns. Alpha diversity increases especially with temperature seasonality in deciduous broadleaf forests, on limestone bedrock in coniferous forests and in areas with low annual actual evapotranspiration in sclerophyllous forests. Main conclusions We provide the first predictive maps and analyses of environmental factors driving the alpha diversity of vascular plants across European forests. Such information is important for the general understanding of European biodiversity. This study also demonstrates a high potential of vegetation‐plot databases as sources for robust estimation of the number of vascular plant species that co‐occur at fine spatial grains across large areas.
Species composition of semi‐natural mesic grasslands as a factor influencing the methane yield of plant biomass (Central Europe)
Semi‐natural lowland and mountain mesic meadows are grasslands rich in species, and their conservation status depends on treatments such as mowing or grazing livestock. In many countries, the condition of grasslands is deteriorating because of their inappropriate use or abandonment. This study aimed to determine the effects of the species composition of plant communities and functional plant groups on the methane yield from biomass harvested from mesic grasslands in the Sudetes Mountains. Biogas potential analysis was performed based on biomass samples collected from Poland and the Czech Republic. The biogas potential was determined in 40 day‐long batch anaerobic digestion tests. The average methane yield obtained from the biomass was 246 ± 16 NL CH4 kg−1 VS, whereas the methane yield per hectare was 870 ± 203 m3 CH4 ha−1. Plant communities comprising different dominant species had no effect on the methane yield but affected the methane yield per hectare. Additionally, the species composition of grasslands with a higher percentage of forbs had lower biomass yield, resulting in lower methane yields per hectare. The continuity of the low‐intensity management of mountain grassland, which can be provided by the utilization of their biomass for bioenergy production, sustains high biodiversity and ensures appropriate meadow conservation. Semi‐natural mesic meadows are grasslands rich in species, and their conservation status depends on treatments, such as mowing or grazing livestock. This study aimed to determine the effects of the species composition of plant communities and functional plant groups on the methane yield from biomass harvested from mesic grasslands in Poland and the Czech Republic. The biogas potential was determined in 40 day‐long batch anaerobic digestion tests. Our results can be useful in predicting the energy potential of valuable grassland habitats, whose existence is at risk due to abandonment, land‐use intensification or conversion.
Syntaxonomic classification of forb steppes and related vegetation of subalpine and alpine belts in the Pamir-Alai Mountains (Tajikistan, Middle Asia)
Aims : To complete the syntaxonomic scheme of subalpine forb steppes in the Pamir-Alai Mountains in Tajikistan with some remarks on its environmental predictors. Study area : Tajikistan. Methods : A total of 149 relevés were sampled in 2014 and 2021 using the seven-degree cover-abundance scale of the Braun-Blanquet scheme. These were classified with a modified TWINSPAN algorithm with pseudospecies cut-off levels of 0%, 2%, 5% and 25%, and total inertia as a measure of cluster heterogeneity. Diagnostic species were determined using the phi coefficient as a fidelity measure. Detrended Correspondence Analysis (DCA) was used to show compositional differences between the distinguished alpine and subalpine grassland units. Results : Our classification revealed 12 clusters of alpine and subalpine grassland vegetation in Middle Asia. A total of nine new associations and three communities were distinguished. New vegetation types at potential class rank for Irano-Turanian subalpine and alpine grasslands have been proposed: forb steppes with Eremogone griffithii and Nepeta podostachys in subalpine and alpine belts and alpine grasslands with Festuca alaica and Festuca kryloviana for mesic habitats in the alpine belt. The main factors differentiating the species composition were the mean diurnal temperature range, the sum of annual precipitation, precipitation seasonality and the minimum temperature of the coldest month. Conclusions : Our study sheds light on the open habitat vegetation in the Pamir-Alai Mountains and has contributed to the consistent hierarchical classification of the vegetation of the eastern Irano-Turanian region. Subalpine and alpine forb steppes are a very interesting and distinct grassland type in Middle Asia. The syntaxonomic position of some of the distinguished communities is still unclear and further research on this type of alpine and subalpine vegetation within the mountains of Middle Asia is needed. Taxonomic references : The nomenclature of the vascular plants follows Plants of the World Online (POWO 2023) and problematic taxonomic issues were solved according to The World Flora Online (WFO 2023). Nomenclature of Stipa spp. follows Nobis et al. (2020, 2022) and of Geranium spp. Cherepanov (1995). The nomenclature of bryophytes follows Ignatov et al. (2006). Abbreviations : DCA = Detrended Correspondence Analysis.
Spatial patterns of vascular plant species richness in Poland - a data set
Recognition of species richness spatial patterns is important for nature conservation and theoretical studies. Inventorying species richness, especially at a larger spatial extent is challenging, thus different data sources are joined and harmonized to obtain a comprehensive data set. Here we present a new data set showing vascular plant species richness in Poland based on a grid of 10 × 10 km squares. The data set was created using data from two sources: the Atlas of Distribution of Vascular Plants in Poland and the Polish Vegetation Database. Using this data set, we analysed 2,160 species with taxonomical nomenclature according to the Euro + Med PlantBase checklist in 3,283 squares covering the entire territory of Poland (ca. 312,000 km 2 ). The species were divided into groups according to their status and frequency of distribution, and the statistics for each square were obtained. For purposes of analysis, sampling bias was assessed. The data set promotes theoretical analysis on species richness and reinforces the planning of nature conservations.
EUNIS habitat maps: enhancing thematic and spatial resolution for Europe through machine learning
The EUNIS habitat classification is crucial for categorising European habitats, supporting European policy on nature conservation and implementing the Nature Restoration Law. To meet the growing demand for detailed and accurate habitat information, we provide spatial predictions across Europe (EEA39 territory) for 260 EUNIS habitat types at hierarchical level 3, together with independent validation and uncertainty analyses. Using ensemble machine learning models, together with high-resolution satellite imagery and ecologically meaningful climatic, topographic and edaphic variables, we produced a European habitat map indicating the most probable habitat overall at 100-m resolution across Europe. Additionally, we provide information on prediction uncertainty and the most probable habitats at level 3 within each EUNIS level 1 formation. This product is particularly useful for both conservation and restoration purposes. Predictions were cross-validated at European scale using a spatial block cross-validation and evaluated against independent data from France (forests only), the Netherlands and Austria. The maps achieved strong predictive performance, with F1-scores ranging from 0.61 to 0.94 in spatial cross-validation and from 0.33 to 0.95 in external validation datasets with distinct trade-offs in terms of recall and precision across habitat formations. Accuracy improved for rare or localized habitats when considering the top 3 predicted classes.
Distribution of graminoids in open habitats in Tajikistan and Kyrgyzstan
Aims : Landscapes of Middle Asia are exposed to human influence due to long-lasting pastoral tradition, and now are largely dominated by non-forest vegetation. Graminoids perform key ecosystem functions, and constitute an important feed source for livestock. We studied the distribution patterns of graminoids cover under climatic and grazing pressure gradients in different open vegetation types. Study area : Tajikistan, Kyrgyzstan. Methods : 1,525 vegetation plots representing five open vegetation types (mires, salt marshes, tall-forb communities, pseudosteppes and steppes) were extracted from the Vegetation of Middle Asia Database. We assessed the relative cover of graminoid species in each vegetation type. The importance of mean annual temperature, sum of annual precipitation, aridity and livestock density as drivers of relative cover of graminoids contribution patterns in the five vegetation types were explored with use of polynomial functions and commonality analysis. Results : Open ecosystems of Middle Asia are characterized by different graminoid contributions. The highest relative cover of graminoids was found for steppes, pseudosteppes and mires. Comparison of model fits for relationship between the graminoids cover, climatic parameters and livestock pressure indicated advantage of polynomial models. The best-fitting models for pseudosteppes were for mean annual temperature, Aridity Index and livestock density, for steppes mean annual temperature and Aridity Index, and for salt marshes mean annual temperature. For mires and tall-forb communities, the models showed a poor fit or no effect of the variables studied. Conclusions : Our study shows that climate and livestock pressure have an impact on the contribution of graminoids in open vegetation types, but a general pattern is difficult to describe. Ongoing climate change may influence the share of graminoids in salt marshes, steppes and pseudosteppes. Grazing (with a common effect of climatic factors) is the most important factor influencing graminoids contribution on pseudosteppes, confirming the secondary origin of this vegetation type. Taxonomic reference : The nomenclature of the vascular plants follows Plants of the World Online (POWO 2022) and problematic taxonomic issues were based on The World Flora Online (WFO 2022). Nomenclature of Stipa spp. follows Nobis et al. (2020).
A performance comparison of sampling methods in the assessment of species composition patterns and environment-vegetation relationships in species-rich grasslands
The influence that different sampling methods have on the results and the interpretation of vegetation analysis has been much debated, but little is yet known about how the spatial arrangement of samples affect patterns of species composition and environment-vegetation relationships within the same vegetation type. We compared three data sets of the same sample size obtained by three standard sampling methods: preferential, random, and systematic. These different sampling methods were applied to a study area comprising of 36 ha of intermittently wet Molinia meadows. We compared the performance of the three methods under two management categories: managed (extensively mown) and unmanaged (abandoned for 10 years). A total of 285 vegetation-plots were sampled, with 95 plots recorded per sampling method. In preferential sampling, we sampled only patches of vegetation with an abundance of indicator species of the habitat type, while random and systematic plots were positioned independently from the researcher by using GIS. The effect of each sampling method on the patterns of species composition and species--environment relationships was explored by redundancy analysis and the significance of effects was tested by the randomization test. Preferential sampling revealed different patterns of species composition than random and systematic sampling methods. Random and systematic sampling methods have resulted in broader vegetation variability than with preferential sampling method. Preferential sampling revealed different relationship between soil parameters and species composition in contrast to random and systematic sampling methods. Although we have not found significant differences in vegetation--environment relationships between random and systematic sampling methods, random sampling revealed a more robust correlation of species data to soil factors than preferential and systematic sampling methods. Intentional restriction of vegetation variation sampled preferentially may be detrimental to statistical inference in studies of species composition patterns and vegetation--environment relationships. Keywords preferential; random; systematic; soil properties; Molinion meadows
Dimensions of invasiveness
Understanding drivers of success for alien species can inform on potential future invasions. Recent conceptual advances highlight that species may achieve invasiveness via performance along at least three distinct dimensions: 1) local abundance, 2) geographic range size, and 3) habitat breadth in naturalized distributions. Associations among these dimensions and the factors that determine success in each have yet to be assessed at large geographic scales. Here, we combine data from over one million vegetation plots covering the extent of Europe and its habitat diversity with databases on species’ distributions, traits, and historical origins to provide a comprehensive assessment of invasiveness dimensions for the European alien seed plant flora. Invasiveness dimensions are linked in alien distributions, leading to a continuum from overall poor invaders to super invaders—abundant, widespread aliens that invade diverse habitats. This pattern echoes relationships among analogous dimensions measured for native European species. Success along invasiveness dimensions was associated with details of alien species’ introduction histories: earlier introduction dates were positively associated with all three dimensions, and consistent with theory-based expectations, species originating from other continents, particularly acquisitive growth strategists, were among the most successful invaders in Europe. Despite general correlations among invasiveness dimensions, we identified habitats and traits associated with atypical patterns of success in only one or two dimensions—for example, the role of disturbed habitats in facilitating widespread specialists. We conclude that considering invasiveness within a multidimensional framework can provide insights into invasion processes while also informing general understanding of the dynamics of species distributions.
European Vegetation Archive (EVA): an integrated database of European vegetation plots
The European Vegetation Archive (EVA) has been developed since 2012 by the IAVS Working Group European Vegetation Survey as a centralized database of European vegetation plots. It stores copies of national and regional vegetation-plot databases on a single software platform. Data storage in EVA does not affect the ongoing independent development of the contributing databases, which remain the property of the data contributors. A prototype of the database management software TURBOVEG 3 has been developed for joint management of multiple databases that use different species lists. This is facilitated by the SynBioSys Taxon Database, a system of taxon names and concepts used in the individual European databases and their matches to a unified list of European flora. TURBOVEG 3 also includes procedures for handling data requests, selections and provisions according to the approved EVA Data Property and Governance Rules. By 30 June 2015, 61 databases from all European regions have joined EVA, contributing in total 1 024 236 vegetation plots from 57 countries, 82% of them with geographical coordinates. EVA provides a unique data source for large-scale analyses of European vegetation diversity both in fundamental research and nature conservation applications. Updated information on EVA is available online at http://euroveg.org/eva-database.