Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
8
result(s) for
"Swithenbank, Alan M"
Sort by:
Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark
by
Litvin, Steven Y.
,
Madigan, Daniel J.
,
Block, Barbara A.
in
Animals
,
Bayes Theorem
,
Carbon Isotopes - analysis
2015
Ontogenetic changes in habitat are driven by shifting life-history requirements and play an important role in population dynamics. However, large portions of the life history of many pelagic species are still poorly understood or unknown. We used a novel combination of stable isotope analysis of vertebral annuli, Bayesian mixing models, isoscapes and electronic tag data to reconstruct ontogenetic patterns of habitat and resource use in a pelagic apex predator, the salmon shark (Lamna ditropis). Results identified the North Pacific Transition Zone as the major nursery area for salmon sharks and revealed an ontogenetic shift around the age of maturity from oceanic to increased use of neritic habitats. The nursery habitat may reflect trade-offs between prey availability, predation pressure and thermal constraints on juvenile endothermic sharks. The ontogenetic shift in habitat coincided with a reduction of isotopic niche, possibly reflecting specialization upon particular prey or habitats. Using tagging data to inform Bayesian isotopic mixing models revealed that adult sharks primarily use neritic habitats of Alaska yet receive a trophic subsidy from oceanic habitats. Integrating the multiple methods used here provides a powerful approach to retrospectively study the ecology and life history of migratory species throughout their ontogeny.
Journal Article
Persistent Leatherback Turtle Migrations Present Opportunities for Conservation
by
Piedra, Rotney
,
Wallace, Bryan P
,
Block, Barbara A
in
Animal Migration
,
Animals
,
Aquatic reptiles
2008
Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea) in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004-2005, 2005-2006, and 2007) satellite tracking dataset (12,095 cumulative satellite tracking days) collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre.
Journal Article
Movement Patterns for a Critically Endangered Species, the Leatherback Turtle (Dermochelys coriacea), Linked to Foraging Success and Population Status
by
Strömberg, K. H. Patrik
,
Hays, Graeme C.
,
Bograd, Steven J.
in
Animal behavior
,
Animal reproduction
,
Animals
2012
Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (<15 km d(-1)) and transit at high speeds (20-45 km d(-1)). Only a single mode was evident in the Pacific, which occurred at speeds of 21 km d(-1) indicative of transit. The mean dive depth was more variable in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic.
Journal Article
Movement Patterns for a Critically Endangered Species, the Leatherback Turtle
by
Strömberg, K. H. Patrik
,
Block, Barbara A
,
Georges, Jean-Yves
in
Endangered species
,
Sea turtles
2012
Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (<15 km d.sup.-1) and transit at high speeds (20-45 km d.sup.-1). Only a single mode was evident in the Pacific, which occurred at speeds of 21 km d.sup.-1 indicative of transit. The mean dive depth was more variable in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic.
Journal Article
Vertical and horizontal habitat preferences of post-nesting leatherback turtles in the South Pacific Ocean
by
Piedra, Rotney
,
Bograd, Steven J.
,
Shillinger, George L.
in
Aquatic habitats
,
Foraging
,
Habitat conservation
2011
Leatherback turtles are the largest and widest ranging turtle species, and spend much of their time in the offshore pelagic environment. However, the high seas have thus far received little management attention to protect their ecosystems and biodiversity. We tagged 46 female leatherback turtles with satellite transmitters at Playa Grande, Costa Rica from 2004 to 2007. In the present study, we analyzed the vertical and horizontal habitat preferences of these leatherback turtles in the South Pacific Ocean. The turtles exhibited short, shallow dives during their migration southward (mean depth: 45 m; mean duration: 23.6 min), followed by deeper, longer dives (mean depth: 56.7 m; mean duration: 26.4 min) in the South Pacific Gyre that probably indicated searching for prey. We integrated the horizontal movements with remotely sensed oceanographic data to determine the turtles’ response to the environment, and applied this information to recommendations for conservation in the pelagic environment. A generalized additive mixed model applied to the daily turtle travel rates confirmed that slower travel rates occurred at cooler sea surface temperatures, higher chlorophyllaconcentration and stronger vertical Ekman upwelling, all of which are considered favorable foraging conditions. The southern terminus (35 to 37° S) of the leatherback tracks was also in an area of increased mesoscale activity that might act as a physical mechanism to aggregate their prey, gelatinous zooplankton. However, this could also act as a thermal limit to their distribution. This characterization of leatherback habitat use could aid the development of management efforts within the South Pacific Ocean to reduce mortality of leatherback turtles from fisheries interactions.
Journal Article
Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark
2015
Ontogenetic changes in habitat are driven by shifting life-history requirements and play an important role in population dynamics. However, large portions of the life history of many pelagic species are still poorly understood or unknown. We used a novel combination of stable isotope analysis of vertebral annuli, Bayesian mixing models, isoscapes and electronic tag data to reconstruct ontogenetic patterns of habitat and resource use in a pelagic apex predator, the salmon shark (Lattina ditropis). Results identified the North Pacific Transition Zone as the major nursery area for salmon sharks and revealed an ontogenetic shift around the age of maturity from oceanic to increased use of neritic habitats. The nursery habitat may reflect trade-offs between prey availability, predation pressure and thermal constraints on juvenile endothermic sharks. The ontogenetic shift in habitat coincided with a reduction of isotopie niche, possibly reflecting specialization upon particular prey or habitats. Using tagging data to inform Bayesian isotopie mixing models revealed that adult sharks primarily use neritic habitats of Alaska yet receive a trophic subsidy from oceanic habitats. Integrating the multiple methods used here provides a powerful approach to retrospectively study the ecology and life history of migratory species throughout their ontogeny.
Journal Article