Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Syga Simon"
Sort by:
Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion
Plasticity of cancer invasion and metastasis depends on the ability of cancer cells to switch between collective and single-cell dissemination, controlled by cadherin-mediated cell–cell junctions. In clinical samples, E-cadherin-expressing and -deficient tumours both invade collectively and metastasize equally, implicating additional mechanisms controlling cell–cell cooperation and individualization. Here, using spatially defined organotypic culture, intravital microscopy of mammary tumours in mice and in silico modelling, we identify cell density regulation by three-dimensional tissue boundaries to physically control collective movement irrespective of the composition and stability of cell–cell junctions. Deregulation of adherens junctions by downregulation of E-cadherin and p120-catenin resulted in a transition from coordinated to uncoordinated collective movement along extracellular boundaries, whereas single-cell escape depended on locally free tissue space. These results indicate that cadherins and extracellular matrix confinement cooperate to determine unjamming transitions and stepwise epithelial fluidization towards, ultimately, cell individualization.Ilina et al. investigate the balance between cell adhesion and matrix density on patterns of collective breast cancer cell invasion using three-dimensional models of the extracellular matrix, in vivo imaging and in silico modelling
BIO-LGCA: A cellular automaton modelling class for analysing collective cell migration
Collective dynamics in multicellular systems such as biological organs and tissues plays a key role in biological development, regeneration, and pathological conditions. Collective tissue dynamics—understood as population behaviour arising from the interplay of the constituting discrete cells—can be studied with on- and off-lattice agent-based models. However, classical on-lattice agent-based models, also known as cellular automata, fail to replicate key aspects of collective migration, which is a central instance of collective behaviour in multicellular systems. To overcome drawbacks of classical on-lattice models, we introduce an on-lattice, agent-based modelling class for collective cell migration, which we call biological lattice-gas cellular automaton (BIO-LGCA). The BIO-LGCA is characterised by synchronous time updates, and the explicit consideration of individual cell velocities. While rules in classical cellular automata are typically chosen ad hoc, rules for cell-cell and cell-environment interactions in the BIO-LGCA can also be derived from experimental cell migration data or biophysical laws for individual cell migration. We introduce elementary BIO-LGCA models of fundamental cell interactions, which may be combined in a modular fashion to model complex multicellular phenomena. We exemplify the mathematical mean-field analysis of specific BIO-LGCA models, which allows to explain collective behaviour. The first example predicts the formation of clusters in adhesively interacting cells. The second example is based on a novel BIO-LGCA combining adhesive interactions and alignment. For this model, our analysis clarifies the nature of the recently discovered invasion plasticity of breast cancer cells in heterogeneous environments.
Inferring the effect of interventions on COVID-19 transmission networks
Countries around the world implement nonpharmaceutical interventions (NPIs) to mitigate the spread of COVID-19. Design of efficient NPIs requires identification of the structure of the disease transmission network. We here identify the key parameters of the COVID-19 transmission network for time periods before, during, and after the application of strict NPIs for the first wave of COVID-19 infections in Germany combining Bayesian parameter inference with an agent-based epidemiological model. We assume a Watts–Strogatz small-world network which allows to distinguish contacts within clustered cliques and unclustered, random contacts in the population, which have been shown to be crucial in sustaining the epidemic. In contrast to other works, which use coarse-grained network structures from anonymized data, like cell phone data, we consider the contacts of individual agents explicitly. We show that NPIs drastically reduced random contacts in the transmission network, increased network clustering, and resulted in a previously unappreciated transition from an exponential to a constant regime of new cases. In this regime, the disease spreads like a wave with a finite wave speed that depends on the number of contacts in a nonlinear fashion, which we can predict by mean field theory.
Evolution of phenotypic plasticity leads to tumor heterogeneity with implications for therapy
Cancer is a significant global health issue, with treatment challenges arising from intratumor heterogeneity. This heterogeneity stems mainly from somatic evolution, causing genetic diversity within the tumor, and phenotypic plasticity of tumor cells leading to reversible phenotypic changes. However, the interplay of both factors has not been rigorously investigated. Here, we examine the complex relationship between somatic evolution and phenotypic plasticity, explicitly focusing on the interplay between cell migration and proliferation. This type of phenotypic plasticity is essential in glioblastoma, the most aggressive form of brain tumor. We propose that somatic evolution alters the regulation of phenotypic plasticity in tumor cells, specifically the reaction to changes in the microenvironment. We study this hypothesis using a novel, spatially explicit model that tracks individual cells’ phenotypic and genetic states. We assume cells change between migratory and proliferative states controlled by inherited and mutation-driven genotypes and the cells’ microenvironment. We observe that cells at the tumor edge evolve to favor migration over proliferation and vice versa in the tumor bulk. Notably, different genetic configurations can result in this pattern of phenotypic heterogeneity. We analytically predict the outcome of the evolutionary process, showing that it depends on the tumor microenvironment. Synthetic tumors display varying levels of genetic and phenotypic heterogeneity, which we show are predictors of tumor recurrence time after treatment. Interestingly, higher phenotypic heterogeneity predicts poor treatment outcomes, unlike genetic heterogeneity. Our research offers a novel explanation for heterogeneous patterns of tumor recurrence in glioblastoma patients.
Entropy-driven cell decision-making predicts 'fluid-to-solid' transition in multicellular systems
Cellular decision making allows cells to assume functionally different phenotypes in response to microenvironmental cues, with or without genetic change. It is an open question, how individual cell decisions influence the dynamics at the tissue level. Here, we study spatio-temporal pattern formation in a population of cells exhibiting phenotypic plasticity, which is a paradigm of cell decision making. We focus on the migration/resting and the migration/proliferation plasticity which underly the epithelial-mesenchymal transition and the go or grow dichotomy. We assume that cells change their phenotype in order to minimize their microenvironmental entropy following the LEUP (Least microEnvironmental Uncertainty Principle) hypothesis. In turn, we study the impact of the LEUP-driven migration/resting and migration/proliferation plasticity on the corresponding multicellular spatio-temporal dynamics with a stochastic cell-based mathematical model for the spatio-temporal dynamics of the cell phenotypes. In the case of the go or rest plasticity, a corresponding mean-field approximation allows to identify a bistable switching mechanism between a diffusive (fluid) and an epithelial (solid) tissue phase which depends on the sensitivity of the phenotypes to the environment. For the go or grow plasticity, we show the possibility of Turing pattern formation for the 'solid' tissue phase and its relation with the parameters of the LEUP-driven cell decisions.
Correction: Quantification of nematic cell polarity in three-dimensional tissues
[This corrects the article DOI: 10.1371/journal.pcbi.1008412.].[This corrects the article DOI: 10.1371/journal.pcbi.1008412.].
Quantification of nematic cell polarity in three-dimensional tissues
How epithelial cells coordinate their polarity to form functional tissues is an open question in cell biology. Here, we characterize a unique type of polarity found in liver tissue, nematic cell polarity, which is different from vectorial cell polarity in simple, sheet-like epithelia. We propose a conceptual and algorithmic framework to characterize complex patterns of polarity proteins on the surface of a cell in terms of a multipole expansion. To rigorously quantify previously observed tissue-level patterns of nematic cell polarity (Morales-Navarrete et al., eLife 2019), we introduce the concept of co-orientational order parameters, which generalize the known biaxial order parameters of the theory of liquid crystals. Applying these concepts to three-dimensional reconstructions of single cells from high-resolution imaging data of mouse liver tissue, we show that the axes of nematic cell polarity of hepatocytes exhibit local coordination and are aligned with the biaxially anisotropic sinusoidal network for blood transport. Our study characterizes liver tissue as a biological example of a biaxial liquid crystal. The general methodology developed here could be applied to other tissues and in-vitro organoids.
35 Cent weniger für Benzin und 17 Cent weniger für Diesel – Der Tankrabatt ist angekommen
Deutsche Verbraucher*innen haben zwischen Juni und August durchschnittlich 35 Cent weniger pro Liter Benzin und 17 Cent weniger pro Liter Diesel als ohne Tankrabatt bezahlt. Allerdings kam die Steuersenkung nicht immer vollständig bei den Endverbraucher*innen an. In den Wochen unmittelbar nach seiner Einführung im Juni und vor Abschaffung im August wurde der Steuernachlass nur teilweise weitergegeben. Dafür war die Entlastung im Juli sogar höher als 35 Cent bzw. 17 Cent pro Liter. Dies zeigt unsere Auswertung des gesamten Zeitraums des Tankrabatts, in der die Preise an den Zapfsäulen in Deutschland mit denen in europäischen Nachbarländern verglichen werden.
Evolution of phenotypic plasticity leads to tumor heterogeneity with implications for therapy
Cancer is a significant global health issue, with treatment challenges arising from intratumor heterogeneity. This heterogeneity stems mainly from somatic evolution, causing genetic diversity within the tumor, and phenotypic plasticity of tumor cells leading to reversible phenotypic changes. However, the interplay of both factors has not been rigorously investigated. Here, we examine the complex relationship between somatic evolution and phenotypic plasticity, explicitly focusing on the interplay between cell migration and proliferation. This type of phenotypic plasticity is essential in glioblastoma, the most aggressive form of brain tumor. We propose that somatic evolution alters the regulation of phenotypic plasticity in tumor cells, specifically the reaction to changes in the microenvironment. We study this hypothesis using a novel, spatially explicit model that tracks individual cells’ phenotypic and genetic states. We assume cells change between migratory and proliferative states controlled by inherited and mutation-driven genotypes and the cells’ microenvironment. We observe that cells at the tumor edge evolve to favor migration over proliferation and vice versa in the tumor bulk. Notably, different genetic configurations can result in this pattern of phenotypic heterogeneity. We analytically predict the outcome of the evolutionary process, showing that it depends on the tumor microenvironment. Synthetic tumors display varying levels of genetic and phenotypic heterogeneity, which we show are predictors of tumor recurrence time after treatment. Interestingly, higher phenotypic heterogeneity predicts poor treatment outcomes, unlike genetic heterogeneity. Our research offers a novel explanation for heterogeneous patterns of tumor recurrence in glioblastoma patients. Intratumor heterogeneity presents a significant barrier to effective cancer therapy. This heterogeneity stems from the evolution of cancer cells and their capability for phenotypic plasticity. However, the interplay between these two factors still needs to be fully understood. This study examines the interaction between cancer cell evolution and phenotypic plasticity, focusing on the phenotypic switch between migration and proliferation. Such plasticity is particularly relevant to glioblastoma, the most aggressive form of brain tumor. By employing a novel model, we explore how tumor cell evolution, influenced by both genotype and microenvironment, contributes to tumor heterogeneity. We observe that cells at the tumor periphery tend to migrate, while those within the tumor are more inclined to proliferate. Interestingly, our analysis reveals that distinct genetic configurations of the tumor can lead to this observed pattern. Further, we delve into the implications for cancer treatment and discover that it is phenotypic, rather than genetic, heterogeneity that more accurately predicts tumor recurrence following therapy. Our findings offer insights into the significant variability observed in glioblastoma recurrence times post-treatment.
BIO-LGCA: a cellular automaton modelling class for analysing collective cell migration
1 Abstract Collective dynamics in multicellular systems such as biological organs and tissues plays a key role in biological development, regeneration, and pathological conditions. Collective dynamics - understood as population behaviour arising from the interplay of the constituting discrete cells - can be studied with mathematical models. Off- and on-lattice agent-based models allow to analyse the link between individual cell and collective behaviour. Notably, in on-lattice agent-based models known as cellular automata, collective behaviour can not only be analysed through computer simulations, but predicted with mathematical methods. However, classical cellular automaton models fail to replicate key aspects of collective migration, which is a central instance of collective behaviour in multicellular systems. To overcome drawbacks of classical on-lattice models, we introduce a novel on-lattice, agent-based modelling class for collective cell migration, which we call biological lattice-gas cellular automaton (BIO-LGCA). The BIO-LGCA is characterised by synchronous time updates, and the explicit consideration of individual cell velocities. While rules in classical cellular automata are typically chosen ad hoc, we demonstrate that rules for cell-cell and cell-environment inter-actions in the BIO-LGCA can also be derived from experimental single cell migration data or biophysical laws for individual cell migration. Furthermore, we present elementary BIO-LGCA models of fundamental cell interactions, which may be combined in a modular fashion to model complex multicellular phenomena. Finally, we present a mathematical mean-field analysis of a BIO-LGCA model that allows to predict collective patterns for a particular cell-cell interaction. A Python package which implements various interaction rules and visualisations of BIO-LGCA model simulations we have developed is available at https://github.com/sisyga/BIO-LGCA. Author summary Pathophysiological tissue dynamics, such as cancer tissue invasion, and structure formation during embryonic development, emerge from individual inter-cellular interactions. In order to study the impact of single cell dynamics and cell-cell interactions on tissue behaviour, one needs to develop space-time-dependent agent-based models (ABMs), which consider the behaviour of individual cells. Typically, in agent-based models there is a payoff between biological realism and computational cost of corresponding model simulations. Continuous time ABMs are typically more realistic but computationally expensive, while rule- and lattice-based ABMs are regarded as phenomenological but computationally efficient and amenable to mathematical analysis. Here, we present the rule- and lattice-based BIO-LGCA modelling class which allows for (i) rigorous derivation of rules from biophysical laws and/or experimental data, (ii) mathematical analysis of the resulting dynamics, and (iii) computational efficiency. Competing Interest Statement The authors have declared no competing interest. Footnotes * https://github.com/sisyga/BIO-LGCA