Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Symonova, Olga"
Sort by:
GiA Roots: software for the high throughput analysis of plant root system architecture
Background Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. Results We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user. Conclusions We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa . We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis.
Bilateral interactions of optic-flow sensitive neurons coordinate course control in flies
Animals rely on compensatory actions to maintain stability and navigate their environment efficiently. These actions depend on global visual motion cues known as optic-flow. While the optomotor response has been the traditional focus for studying optic-flow compensation in insects, its simplicity has been insufficient to determine the role of the intricate optic-flow processing network involved in visual course control. Here, we reveal a series of course control behaviours in Drosophila and link them to specific neural circuits. We show that bilateral electrical coupling of optic-flow-sensitive neurons in the fly’s lobula plate are required for a proper course control. This electrical interaction works alongside chemical synapses within the HS-H2 network to control the dynamics and direction of turning behaviours. Our findings reveal how insects use bilateral motion cues for navigation, assigning a new functional significance to the HS-H2 network and suggesting a previously unknown role for gap junctions in non-linear operations. The circuitry underpinning visuomotor behaviors in flies is poorly understood. Here, the authors show that the underlying computations require bilateral electrical coupling to control turning dynamics and direction for effective course control.
3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture
Improving the efficiency of root systems should result in crop varieties with better yields, requiring fewer chemical inputs, and that can grow in harsher environments. Little is known about the genetic factors that condition root growth because of roots’ complex shapes, the opacity of soil, and environmental influences. We designed a 3D root imaging and analysis platform and used it to identify regions of the rice genome that control several different aspects of root system growth. The results of this study should inform future efforts to enhance root architecture for agricultural benefit. Identification of genes that control root system architecture in crop plants requires innovations that enable high-throughput and accurate measurements of root system architecture through time. We demonstrate the ability of a semiautomated 3D in vivo imaging and digital phenotyping pipeline to interrogate the quantitative genetic basis of root system growth in a rice biparental mapping population, Bala × Azucena. We phenotyped >1,400 3D root models and >57,000 2D images for a suite of 25 traits that quantified the distribution, shape, extent of exploration, and the intrinsic size of root networks at days 12, 14, and 16 of growth in a gellan gum medium. From these data we identified 89 quantitative trait loci, some of which correspond to those found previously in soil-grown plants, and provide evidence for genetic tradeoffs in root growth allocations, such as between the extent and thoroughness of exploration. We also developed a multivariate method for generating and mapping central root architecture phenotypes and used it to identify five major quantitative trait loci ( r 2 = 24–37%), two of which were not identified by our univariate analysis. Our imaging and analytical platform provides a means to identify genes with high potential for improving root traits and agronomic qualities of crops.
DynamicRoots: A Software Platform for the Reconstruction and Analysis of Growing Plant Roots
We present a software platform for reconstructing and analyzing the growth of a plant root system from a time-series of 3D voxelized shapes. It aligns the shapes with each other, constructs a geometric graph representation together with the function that records the time of growth, and organizes the branches into a hierarchy that reflects the order of creation. The software includes the automatic computation of structural and dynamic traits for each root in the system enabling the quantification of growth on fine-scale. These are important advances in plant phenotyping with applications to the study of genetic and environmental influences on growth.
Shared behavioural impairments in visual perception and place avoidance across different autism models are driven by periaqueductal grey hypoexcitability in Setd5 haploinsufficient mice
Despite the diverse genetic origins of autism spectrum disorders (ASDs), affected individuals share strikingly similar and correlated behavioural traits that include perceptual and sensory processing challenges. Notably, the severity of these sensory symptoms is often predictive of the expression of other autistic traits. However, the origin of these perceptual deficits remains largely elusive. Here, we show a recurrent impairment in visual threat perception that is similarly impaired in 3 independent mouse models of ASD with different molecular aetiologies. Interestingly, this deficit is associated with reduced avoidance of threatening environments—a nonperceptual trait. Focusing on a common cause of ASDs, the Setd5 gene mutation, we define the molecular mechanism. We show that the perceptual impairment is caused by a potassium channel (Kv1)-mediated hypoexcitability in a subcortical node essential for the initiation of escape responses, the dorsal periaqueductal grey (dPAG). Targeted pharmacological Kv1 blockade rescued both perceptual and place avoidance deficits, causally linking seemingly unrelated trait deficits to the dPAG. Furthermore, we show that different molecular mechanisms converge on similar behavioural phenotypes by demonstrating that the autism models Cul3 and Ptchd1 , despite having similar behavioural phenotypes, differ in their functional and molecular alteration. Our findings reveal a link between rapid perception controlled by subcortical pathways and appropriate learned interactions with the environment and define a nondevelopmental source of such deficits in ASD.
Leaf Extraction and Analysis Framework Graphical User Interface: Segmenting and Analyzing the Structure of Leaf Veins and Areoles
Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure.
Panoramic visual statistics shape retina-wide organization of receptive fields
Statistics of natural scenes are not uniform—their structure varies dramatically from ground to sky. It remains unknown whether these nonuniformities are reflected in the large-scale organization of the early visual system and what benefits such adaptations would confer. Here, by relying on the efficient coding hypothesis, we predict that changes in the structure of receptive fields across visual space increase the efficiency of sensory coding. Using the mouse ( Mus musculus ) as a model species, we show that receptive fields of retinal ganglion cells change their shape along the dorsoventral retinal axis, with a marked surround asymmetry at the visual horizon, in agreement with our predictions. Our work demonstrates that, according to principles of efficient coding, the panoramic structure of natural scenes is exploited by the retina across space and cell types. The statistics of natural scenes are not uniform—their structure varies dramatically from ground to sky. A combination of theory and experiments revealed that the visual system has adapted to these inhomogeneities to increase coding efficiency.
Imaging and Analysis Platform for Automatic Phenotyping and Trait Ranking of Plant Root Systems
The ability to nondestructively image and automatically phenotype complex root systems, like those of rice (Oryza sativa), is fundamental to identifying genes underlying root system architecture (RSA). Although root systems are central to plant fitness, identifying genes responsible for RSA remains an underexplored opportunity for crop improvement. Here we describe a nondestructive imaging and analysis system for automated phenotyping and trait ranking of RSA. Using this system, we image rice roots from 12 genotypes. We automatically estimate RSA traits previously identified as important to plant function. In addition, we expand the suite of features examined for RSA to include traits that more comprehensively describe monocot RSA but that are difficult to measure with traditional methods. Using 16 automatically acquired phenotypic traits for 2,297 images from 118 individuals, we observe (1) wide variation in phenotypes among the genotypes surveyed; and (2) greater intergenotype variance of RSA features than variance within a genotype. RSA trait values are integrated into a computational pipeline that utilizes supervised learning methods to determine which traits best separate two genotypes, and then ranks the traits according to their contribution to each pairwise comparison. This trait-ranking step identifies candidate traits for subsequent quantitative trait loci analysis and demonstrates that depth and average radius are key contributors to differences in rice RSA within our set of genotypes. Our results suggest a strong genetic component underlying rice RSA. This work enables the automatic phenotyping of RSA of individuals within mapping populations, providing an integrative framework for quantitative trait loci analysis of RSA.
Leaf Extraction and Analysis Framework Graphical User Interface: Segmenting and Analyzing the Structure of Leaf Veins and Areoles1WOA
Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure.
Imaging and Analysis Platform for Automatic Phenotyping and Trait Ranking of Plant Root Systems1WOA
The ability to nondestructively image and automatically phenotype complex root systems, like those of rice (Oryza sativa), is fundamental to identifying genes underlying root system architecture (RSA). Although root systems are central to plant fitness, identifying genes responsible for RSA remains an underexplored opportunity for crop improvement. Here we describe a nondestructive imaging and analysis system for automated phenotyping and trait ranking of RSA. Using this system, we image rice roots from 12 genotypes. We automatically estimate RSA traits previously identified as important to plant function. In addition, we expand the suite of features examined for RSA to include traits that more comprehensively describe monocot RSA but that are difficult to measure with traditional methods. Using 16 automatically acquired phenotypic traits for 2,297 images from 118 individuals, we observe (1) wide variation in phenotypes among the genotypes surveyed; and (2) greater intergenotype variance of RSA features than variance within a genotype. RSA trait values are integrated into a computational pipeline that utilizes supervised learning methods to determine which traits best separate two genotypes, and then ranks the traits according to their contribution to each pairwise comparison. This trait-ranking step identifies candidate traits for subsequent quantitative trait loci analysis and demonstrates that depth and average radius are key contributors to differences in rice RSA within our set of genotypes. Our results suggest a strong genetic component underlying rice RSA. This work enables the automatic phenotyping of RSA of individuals within mapping populations, providing an integrative framework for quantitative trait loci analysis of RSA.