Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
80 result(s) for "Szczurek, Ewa"
Sort by:
Discovering highly potent antimicrobial peptides with deep generative model HydrAMP
Antimicrobial peptides emerge as compounds that can alleviate the global health hazard of antimicrobial resistance, prompting a need for novel computational approaches to peptide generation. Here, we propose HydrAMP, a conditional variational autoencoder that learns lower-dimensional, continuous representation of peptides and captures their antimicrobial properties. The model disentangles the learnt representation of a peptide from its antimicrobial conditions and leverages parameter-controlled creativity. HydrAMP is the first model that is directly optimized for diverse tasks, including unconstrained and analogue generation and outperforms other approaches in these tasks. An additional preselection procedure based on ranking of generated peptides and molecular dynamics simulations increases experimental validation rate. Wet-lab experiments on five bacterial strains confirm high activity of nine peptides generated as analogues of clinically relevant prototypes, as well as six analogues of an inactive peptide. HydrAMP enables generation of diverse and potent peptides, making a step towards resolving the antimicrobial resistance crisis. Antimicrobial peptides emerge as compounds that can alleviate the global health hazard of antimicrobial resistance. Here, the authors propose HydrAMP, an extended conditional variational autoencoder. HydrAMP generated antimicrobial peptides with high activity against bacteria, including multidrug-resistant species.
Eleven grand challenges in single-cell data science
The recent boom in microfluidics and combinatorial indexing strategies, combined with low sequencing costs, has empowered single-cell sequencing technology. Thousands—or even millions—of cells analyzed in a single experiment amount to a data revolution in single-cell biology and pose unique data science problems. Here, we outline eleven challenges that will be central to bringing this emerging field of single-cell data science forward. For each challenge, we highlight motivating research questions, review prior work, and formulate open problems. This compendium is for established researchers, newcomers, and students alike, highlighting interesting and rewarding problems for the coming years.
Modeling Mutual Exclusivity of Cancer Mutations
In large collections of tumor samples, it has been observed that sets of genes that are commonly involved in the same cancer pathways tend not to occur mutated together in the same patient. Such gene sets form mutually exclusive patterns of gene alterations in cancer genomic data. Computational approaches that detect mutually exclusive gene sets, rank and test candidate alteration patterns by rewarding the number of samples the pattern covers and by punishing its impurity, i.e., additional alterations that violate strict mutual exclusivity. However, the extant approaches do not account for possible observation errors. In practice, false negatives and especially false positives can severely bias evaluation and ranking of alteration patterns. To address these limitations, we develop a fully probabilistic, generative model of mutual exclusivity, explicitly taking coverage, impurity, as well as error rates into account, and devise efficient algorithms for parameter estimation and pattern ranking. Based on this model, we derive a statistical test of mutual exclusivity by comparing its likelihood to the null model that assumes independent gene alterations. Using extensive simulations, the new test is shown to be more powerful than a permutation test applied previously. When applied to detect mutual exclusivity patterns in glioblastoma and in pan-cancer data from twelve tumor types, we identify several significant patterns that are biologically relevant, most of which would not be detected by previous approaches. Our statistical modeling framework of mutual exclusivity provides increased flexibility and power to detect cancer pathways from genomic alteration data in the presence of noise. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2-5.
Interpretable deep recommender system model for prediction of kinase inhibitor efficacy across cancer cell lines
Computational models for drug sensitivity prediction have the potential to significantly improve personalized cancer medicine. Drug sensitivity assays, combined with profiling of cancer cell lines and drugs become increasingly available for training such models. Multiple methods were proposed for predicting drug sensitivity from cancer cell line features, some in a multi-task fashion. So far, no such model leveraged drug inhibition profiles. Importantly, multi-task models require a tailored approach to model interpretability. In this work, we develop DEERS, a neural network recommender system for kinase inhibitor sensitivity prediction. The model utilizes molecular features of the cancer cell lines and kinase inhibition profiles of the drugs. DEERS incorporates two autoencoders to project cell line and drug features into 10-dimensional hidden representations and a feed-forward neural network to combine them into response prediction. We propose a novel interpretability approach, which in addition to the set of modeled features considers also the genes and processes outside of this set. Our approach outperforms simpler matrix factorization models, achieving R  =  0.82 correlation between true and predicted response for the unseen cell lines. The interpretability analysis identifies 67 biological processes that drive the cell line sensitivity to particular compounds. Detailed case studies are shown for PHA-793887, XMD14-99 and Dabrafenib.
Feature selection strategies for drug sensitivity prediction
Drug sensitivity prediction constitutes one of the main challenges in personalized medicine. Critically, the sensitivity of cancer cells to treatment depends on an unknown subset of a large number of biological features. Here, we compare standard, data-driven feature selection approaches to feature selection driven by prior knowledge of drug targets, target pathways, and gene expression signatures. We asses these methodologies on Genomics of Drug Sensitivity in Cancer (GDSC) dataset, evaluating 2484 unique models. For 23 drugs, better predictive performance is achieved when the features are selected according to prior knowledge of drug targets and pathways. The best correlation of observed and predicted response using the test set is achieved for Linifanib (r = 0.75). Extending the drug-dependent features with gene expression signatures yields the most predictive models for 60 drugs, with the best performing example of Dabrafenib. For many compounds, even a very small subset of drug-related features is highly predictive of drug sensitivity. Small feature sets selected using prior knowledge are more predictive for drugs targeting specific genes and pathways, while models with wider feature sets perform better for drugs affecting general cellular mechanisms. Appropriate feature selection strategies facilitate the development of interpretable models that are indicative for therapy design.
A mathematical model of the metastatic bottleneck predicts patient outcome and response to cancer treatment
Metastases are the main reason for cancer-related deaths. Initiation of metastases, where newly seeded tumor cells expand into colonies, presents a tremendous bottleneck to metastasis formation. Despite its importance, a quantitative description of metastasis initiation and its clinical implications is lacking. Here, we set theoretical grounds for the metastatic bottleneck with a simple stochastic model. The model assumes that the proliferation-to-death rate ratio for the initiating metastatic cells increases when they are surrounded by more of their kind. For a total of 159,191 patients across 13 cancer types, we found that a single cell has an extremely low median probability of successful seeding of the order of 10-8. With increasing colony size, a sharp transition from very unlikely to very likely successful metastasis initiation occurs. The median metastatic bottleneck, defined as the critical colony size that marks this transition, was between 10 and 21 cells. We derived the probability of metastasis occurrence and patient outcome based on primary tumor size at diagnosis and tumor type. The model predicts that the efficacy of patient treatment depends on the primary tumor size but even more so on the severity of the metastatic bottleneck, which is estimated to largely vary between patients. We find that medical interventions aiming at tightening the bottleneck, such as immunotherapy, can be much more efficient than therapies that decrease overall tumor burden, such as chemotherapy.
Epistasis in genomic and survival data of cancer patients
Cancer aggressiveness and its effect on patient survival depends on mutations in the tumor genome. Epistatic interactions between the mutated genes may guide the choice of anticancer therapy and set predictive factors of its success. Inhibitors targeting synthetic lethal partners of genes mutated in tumors are already utilized for efficient and specific treatment in the clinic. The space of possible epistatic interactions, however, is overwhelming, and computational methods are needed to limit the experimental effort of validating the interactions for therapy and characterizing their biomarkers. Here, we introduce SurvLRT, a statistical likelihood ratio test for identifying epistatic gene pairs and triplets from cancer patient genomic and survival data. Compared to established approaches, SurvLRT performed favorable in predicting known, experimentally verified synthetic lethal partners of PARP1 from TCGA data. Our approach is the first to test for epistasis between triplets of genes to identify biomarkers of synthetic lethality-based therapy. SurvLRT proved successful in identifying the known gene TP53BP1 as the biomarker of success of the therapy targeting PARP in BRCA1 deficient tumors. Search for other biomarkers for the same interaction revealed a region whose deletion was a more significant biomarker than deletion of TP53BP1. With the ability to detect not only pairwise but twelve different types of triple epistasis, applicability of SurvLRT goes beyond cancer therapy, to the level of characterization of shapes of fitness landscapes.
A pre-registered short-term forecasting study of COVID-19 in Germany and Poland during the second wave
Disease modelling has had considerable policy impact during the ongoing COVID-19 pandemic, and it is increasingly acknowledged that combining multiple models can improve the reliability of outputs. Here we report insights from ten weeks of collaborative short-term forecasting of COVID-19 in Germany and Poland (12 October–19 December 2020). The study period covers the onset of the second wave in both countries, with tightening non-pharmaceutical interventions (NPIs) and subsequently a decay (Poland) or plateau and renewed increase (Germany) in reported cases. Thirteen independent teams provided probabilistic real-time forecasts of COVID-19 cases and deaths. These were reported for lead times of one to four weeks, with evaluation focused on one- and two-week horizons, which are less affected by changing NPIs. Heterogeneity between forecasts was considerable both in terms of point predictions and forecast spread. Ensemble forecasts showed good relative performance, in particular in terms of coverage, but did not clearly dominate single-model predictions. The study was preregistered and will be followed up in future phases of the pandemic. Forecasting models have been used extensively to inform decision making during the COVID-19 pandemic. In this preregistered and prospective study, the authors evaluated 14 short-term models for Germany and Poland, finding considerable heterogeneity in predictions and highlighting the benefits of combined forecasts.
DelSIEVE: cell phylogeny modeling of single nucleotide variants and deletions from single-cell DNA sequencing data
With rapid advancements in single-cell DNA sequencing (scDNA-seq), various computational methods have been developed to study evolution and call variants on single-cell level. However, modeling deletions remains challenging because they affect total coverage in ways that are difficult to distinguish from technical artifacts. We present DelSIEVE, a statistical method that infers cell phylogeny and single-nucleotide variants, accounting for deletions, from scDNA-seq data. DelSIEVE distinguishes deletions from mutations and artifacts, detecting more evolutionary events than previous methods. Simulations show high performance, and application to cancer samples reveals varying amounts of deletions and double mutants in different tumors.