Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,584
result(s) for
"TANG, KE"
Sort by:
Index Investment and the Financialization of Commodities
2012
The authors found that, concurrent with the rapidly growing index investment in commodity markets since the early 2000s, prices of non-energy commodity futures in the United States have become increasingly correlated with oil prices; this trend has been significantly more pronounced for commodities in two popular commodity indices. This finding refiects the financialization of the commodity markets and helps explain the large increase in the price volatility of non-energy commodities around 2008.
Journal Article
Amivantamab plus Chemotherapy in NSCLC with EGFR Exon 20 Insertions
by
Boyer, Michael
,
Zhou, Caicun
,
Majem, Margarita
in
Antineoplastic Agents, Immunological - administration & dosage
,
Antineoplastic Agents, Immunological - adverse effects
,
Antineoplastic Combined Chemotherapy Protocols - administration & dosage
2023
Amivantamab has been approved for the treatment of patients with advanced non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (
) exon 20 insertions who have had disease progression during or after platinum-based chemotherapy. Phase 1 data showed the safety and antitumor activity of amivantamab plus carboplatin-pemetrexed (chemotherapy). Additional data on this combination therapy are needed.
In this phase 3, international, randomized trial, we assigned in a 1:1 ratio patients with advanced NSCLC with
exon 20 insertions who had not received previous systemic therapy to receive intravenous amivantamab plus chemotherapy (amivantamab-chemotherapy) or chemotherapy alone. The primary outcome was progression-free survival according to blinded independent central review. Patients in the chemotherapy group who had disease progression were allowed to cross over to receive amivantamab monotherapy.
A total of 308 patients underwent randomization (153 to receive amivantamab-chemotherapy and 155 to receive chemotherapy alone). Progression-free survival was significantly longer in the amivantamab-chemotherapy group than in the chemotherapy group (median, 11.4 months and 6.7 months, respectively; hazard ratio for disease progression or death, 0.40; 95% confidence interval [CI], 0.30 to 0.53; P<0.001). At 18 months, progression-free survival was reported in 31% of the patients in the amivantamab-chemotherapy group and in 3% in the chemotherapy group; a complete or partial response at data cutoff was reported in 73% and 47%, respectively (rate ratio, 1.50; 95% CI, 1.32 to 1.68; P<0.001). In the interim overall survival analysis (33% maturity), the hazard ratio for death for amivantamab-chemotherapy as compared with chemotherapy was 0.67 (95% CI, 0.42 to 1.09; P = 0.11). The predominant adverse events associated with amivantamab-chemotherapy were reversible hematologic and EGFR-related toxic effects; 7% of patients discontinued amivantamab owing to adverse reactions.
The use of amivantamab-chemotherapy resulted in superior efficacy as compared with chemotherapy alone as first-line treatment of patients with advanced NSCLC with
exon 20 insertions. (Funded by Janssen Research and Development; PAPILLON ClinicalTrials.gov number, NCT04538664.).
Journal Article
Histone Methyltransferase Enhancer of Zeste Homolog 2-Mediated ABCA1 Promoter DNA Methylation Contributes to the Progression of Atherosclerosis
2016
ATP-binding cassette transporter A1 (ABCA1) plays a critical role in maintaining cellular cholesterol homeostasis. The purpose of this study is to identify the molecular mechanism(s) underlying ABCA1 epigenetic modification and determine its potential impact on ABCA1 expression in macrophage-derived foam cell formation and atherosclerosis development. DNA methylation induced foam cell formation from macrophages and promoted atherosclerosis in apolipoprotein E-deficient (apoE-/-) mice. Bioinformatics analyses revealed a large CpG island (CGI) located in the promoter region of ABCA1. Histone methyltransferase enhancer of zeste homolog 2 (EZH2) downregulated ABCA1 mRNA and protein expression in THP-1 and RAW264.7 macrophage-derived foam cells. Pharmacological inhibition of DNA methyltransferase 1 (DNMT1) with 5-Aza-dC or knockdown of DNMT1 prevented the downregulation of macrophage ABCA1 expression, suggesting a role of DNA methylation in ABCA1 expression. Polycomb protein EZH2 induced DNMT1 expression and methyl-CpG-binding protein-2 (MeCP2) recruitment, and stimulated the binding of DNMT1 and MeCP2 to ABCA1 promoter, thereby promoting ABCA1 gene DNA methylation and atherosclerosis. Knockdown of DNMT1 inhibited EZH2-induced downregulation of ABCA1 in macrophages. Conversely, EZH2 overexpression stimulated DNMT1-induced ABCA1 gene promoter methylation and atherosclerosis. EZH2-induced downregulation of ABCA1 gene expression promotes foam cell formation and the development of atherosclerosis by DNA methylation of ABCA1 gene promoter.
Journal Article
Jasmonate‐ and abscisic acid‐activated AaGSW1‐AaTCP15/AaORA transcriptional cascade promotes artemisinin biosynthesis in Artemisia annua
by
Pan, Qi‐Fang
,
Liu, Hang
,
Liu, Pin
in
AaGSW1‐AaTCP15
,
AaORA transcriptional cascade
,
Abscisic acid
2021
Summary Artemisinin, a sesquiterpene lactone widely used in malaria treatment, was discovered in the medicinal plant Artemisia annua. The biosynthesis of artemisinin is efficiently regulated by jasmonate (JA) and abscisic acid (ABA) via regulatory factors. However, the mechanisms linking JA and ABA signalling with artemisinin biosynthesis through an associated regulatory network of downstream transcription factors (TFs) remain enigmatic. Here we report AaTCP15, a JA and ABA dual‐responsive teosinte branched1/cycloidea/proliferating (TCP) TF, which is essential for JA and ABA‐induced artemisinin biosynthesis by directly binding to and activating the promoters of DBR2 and ALDH1, two genes encoding enzymes for artemisinin biosynthesis. Furthermore, AaORA, another positive regulator of artemisinin biosynthesis responds to JA and ABA, interacts with and enhances the transactivation activity of AaTCP15 and simultaneously activates AaTCP15 transcripts. Hence, they form an AaORA‐AaTCP15 module to synergistically activate DBR2, a crucial gene for artemisinin biosynthesis. More importantly, AaTCP15 expression is activated by the multiple reported JA and ABA‐responsive TFs that promote artemisinin biosynthesis. Among them, AaGSW1 acts at the nexus of JA and ABA signalling to activate the artemisinin biosynthetic pathway and directly binds to and activates the AaTCP15 promoter apart from the AaORA promoter, which further facilitates formation of the AaGSW1‐AaTCP15/AaORA regulatory module to integrate JA and ABA‐mediated artemisinin biosynthesis. Our results establish a multilayer regulatory network of the AaGSW1‐AaTCP15/AaORA module to regulate artemisinin biosynthesis through JA and ABA signalling, and provide an interesting avenue for future research exploring the special transcriptional regulation module of TCP genes associated with specialized metabolites in plants.
Journal Article
Impact of temperature and relative humidity on the transmission of COVID-19: a modelling study in China and the United States
2021
ObjectivesWe aim to assess the impact of temperature and relative humidity on the transmission of COVID-19 across communities after accounting for community-level factors such as demographics, socioeconomic status and human mobility status.DesignA retrospective cross-sectional regression analysis via the Fama-MacBeth procedure is adopted.SettingWe use the data for COVID-19 daily symptom-onset cases for 100 Chinese cities and COVID-19 daily confirmed cases for 1005 US counties.ParticipantsA total of 69 498 cases in China and 740 843 cases in the USA are used for calculating the effective reproductive numbers.Primary outcome measuresRegression analysis of the impact of temperature and relative humidity on the effective reproductive number (R value).ResultsStatistically significant negative correlations are found between temperature/relative humidity and the effective reproductive number (R value) in both China and the USA.ConclusionsHigher temperature and higher relative humidity potentially suppress the transmission of COVID-19. Specifically, an increase in temperature by 1°C is associated with a reduction in the R value of COVID-19 by 0.026 (95% CI (−0.0395 to −0.0125)) in China and by 0.020 (95% CI (−0.0311 to −0.0096)) in the USA; an increase in relative humidity by 1% is associated with a reduction in the R value by 0.0076 (95% CI (−0.0108 to −0.0045)) in China and by 0.0080 (95% CI (−0.0150 to −0.0010)) in the USA. Therefore, the potential impact of temperature/relative humidity on the effective reproductive number alone is not strong enough to stop the pandemic.
Journal Article
Cisformer: a scalable cross-modality generation framework for decoding transcriptional regulation at single-cell resolution
2025
Single-cell multiomic technologies enable the joint analysis of different modalities, but face challenges due to experimental complexity. Current computational methods for single-cell cross-modality translation lack biological interpretability. Here, we present Cisformer, a cross-attention-based generative model tailored for cross-modality generation between gene expression and chromatin accessibility at single-cell resolution. Systematic benchmarking demonstrates the superior accuracy and generalization of Cisformer against existing methods. Cisformer leverages its inherent interpretability to precisely link
cis
-regulatory elements to target genes, facilitating the identification of functional transcription factors associated with tumorigenesis and aging. Overall, Cisformer is a powerful tool for single-cell multiomic data analysis.
Journal Article
Glycogen metabolism regulates macrophage-mediated acute inflammatory responses
Our current understanding of how sugar metabolism affects inflammatory pathways in macrophages is incomplete. Here, we show that glycogen metabolism is an important event that controls macrophage-mediated inflammatory responses. IFN-γ/LPS treatment stimulates macrophages to synthesize glycogen, which is then channeled through glycogenolysis to generate G6P and further through the pentose phosphate pathway to yield abundant NADPH, ensuring high levels of reduced glutathione for inflammatory macrophage survival. Meanwhile, glycogen metabolism also increases UDPG levels and the receptor P2Y
14
in macrophages. The UDPG/P2Y
14
signaling pathway not only upregulates the expression of STAT1 via activating RARβ but also promotes STAT1 phosphorylation by downregulating phosphatase TC45. Blockade of this glycogen metabolic pathway disrupts acute inflammatory responses in multiple mouse models. Glycogen metabolism also regulates inflammatory responses in patients with sepsis. These findings show that glycogen metabolism in macrophages is an important regulator and indicate strategies that might be used to treat acute inflammatory diseases.
Glycogen can be metabolized via glycogenolysis and the pentose phosphate pathway as well as into the production of UDP glucose, which when secreted can bind the P2Y
14
receptor. Here the authors show how these glycogen metabolism pathways contribute to proinflammatory macrophage activation and susceptibility to sepsis.
Journal Article
New Perspectives on How to Discover Drugs from Herbal Medicines : CAM's Outstanding Contribution to Modern Therapeutics
by
Zhou, Shu-Feng
,
Sun, Jian-Ning
,
Pan, Si-Yuan
in
Alternative medicine
,
Cancer
,
Drug development
2013
With tens of thousands of plant species on earth, we are endowed with an enormous wealth of medicinal remedies from Mother Nature. Natural products and their derivatives represent more than 50% of all the drugs in modern therapeutics. Because of the low success rate and huge capital investment need, the research and development of conventional drugs are very costly and difficult. Over the past few decades, researchers have focused on drug discovery from herbal medicines or botanical sources, an important group of complementary and alternative medicine (CAM) therapy. With a long history of herbal usage for the clinical management of a variety of diseases in indigenous cultures, the success rate of developing a new drug from herbal medicinal preparations should, in theory, be higher than that from chemical synthesis. While the endeavor for drug discovery from herbal medicines is “experience driven,” the search for a therapeutically useful synthetic drug, like “looking for a needle in a haystack,” is a daunting task. In this paper, we first illustrated various approaches of drug discovery from herbal medicines. Typical examples of successful drug discovery from botanical sources were given. In addition, problems in drug discovery from herbal medicines were described and possible solutions were proposed. The prospect of drug discovery from herbal medicines in the postgenomic era was made with the provision of future directions in this area of drug development.
Journal Article
Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype
2018
Resetting tumor-associated macrophages (TAMs) is a promising strategy to ameliorate the immunosuppressive tumor microenvironment and improve innate and adaptive antitumor immunity. Here we show that chloroquine (CQ), a proven anti-malarial drug, can function as an antitumor immune modulator that switches TAMs from M2 to tumor-killing M1 phenotype. Mechanistically, CQ increases macrophage lysosomal pH, causing Ca
2+
release via the lysosomal Ca
2+
channel mucolipin-1 (Mcoln1), which induces the activation of p38 and NF-κB, thus polarizing TAMs to M1 phenotype. In parallel, the released Ca
2+
activates transcription factor EB (TFEB), which reprograms the metabolism of TAMs from oxidative phosphorylation to glycolysis. As a result, CQ-reset macrophages ameliorate tumor immune microenvironment by decreasing immunosuppressive infiltration of myeloid-derived suppressor cells and Treg cells, thus enhancing antitumor T-cell immunity. These data illuminate a previously unrecognized antitumor mechanism of CQ, suggesting a potential new macrophage-based tumor immunotherapeutic modality.
Tumour-associated macrophages (TAMs) display an M2 phenotype that promote tumour immune escape. Here the authors show that Chloroquine (CQ), a lysosome inhibitor used against malaria, inhibits tumour growth by switching TAMs into an M1 tumor-killing phenotype by repolarizing macrophages metabolism.
Journal Article
Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses
by
Tang, Ke
,
Yang, Peng
,
Hong, Wen-Jing
in
Evolutionary algorithms
,
Evolutionary computation
,
Multiple objective analysis
2021
Large-scale multi-objective optimization problems (MOPs) that involve a large number of decision variables, have emerged from many real-world applications. While evolutionary algorithms (EAs) have been widely acknowledged as a mainstream method for MOPs, most research progress and successful applications of EAs have been restricted to MOPs with small-scale decision variables. More recently, it has been reported that traditional multi-objective EAs (MOEAs) suffer severe deterioration with the increase of decision variables. As a result, and motivated by the emergence of real-world large-scale MOPs, investigation of MOEAs in this aspect has attracted much more attention in the past decade. This paper reviews the progress of evolutionary computation for large-scale multi-objective optimization from two angles. From the key difficulties of the large-scale MOPs, the scalability analysis is discussed by focusing on the performance of existing MOEAs and the challenges induced by the increase of the number of decision variables. From the perspective of methodology, the large-scale MOEAs are categorized into three classes and introduced respectively: divide and conquer based, dimensionality reduction based and enhanced search-based approaches. Several future research directions are also discussed.
Journal Article