Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
252 result(s) for "TOMINO, Yasuhiko"
Sort by:
Pathogenesis and Treatment of Chronic Kidney Disease: A Review of Our Recent Basic and Clinical Data
Chronic kidney disease (CKD) is a worldwide public health problem that affects millions of people from all racial and ethnic groups. At end of 2013, over 300,000 Japanese patients had maintenance dialysis therapy (JSDT). In Japan, the major causes of end stage kidney disease (ESKD) are chronic glomerulonephritis (particularly IgA nephropathy), type 2 diabetic nephropathy, and hypertensive nephrosclerosis. Hypertension is a major factor driving the progression of CKD to ESKD. Since many features of the pathogenesis of IgA nephropathy are still obscure, specific treatment is not yet available. However, efforts by investigators around the world have gradually clarified different aspects of the pathogenesis and treatment of IgA nephropathy. Today, around half of all diabetic patients in Japan receive medical treatment. Type 2 diabetic nephropathy is one of the major long-term microvascular complications occurring in nearly 40% of Japanese diabetic patients. The pathogenesis of diabetic nephropathy involves both genetic and environmental factors. However, the candidate genes related to the initiation and progression of the disorder are still obscure in patients with diabetic nephropathy. Regarding environmental factors, the toxicity of persistent hyperglycemia, reactive oxygen species, systemic and/or glomerular hypertension, dyslipidemia and complement are considered to play an important role. The first part of this review covers the pathogenesis of IgA nephropathy and type 2 diabetic nephropathy, and combines the clinicopathological findings in patients with our research on the ddY and KKA-y mouse models (spontaneous animal models for IgA nephropathy and diabetic nephropathy, respectively). In Japan, the major renal replacement therapies (RRT) are peritoneal dialysis (PD) and hemodialysis (HD). The second part of this review focuses on PD and HD. Based on our research findings from patients and as well as from animal models, we discuss strategies for the management of patients on PD and HD. i 2015 S. Karger AG, Basel
Impacts of Indoxyl Sulfate and p-Cresol Sulfate on Chronic Kidney Disease and Mitigating Effects of AST-120
Uremic toxins, such as indoxyl sulfate (IS) and p-cresol, or p-cresyl sulfate (PCS), are markedly accumulated in the organs of chronic kidney disease (CKD) patients. These toxins can induce inflammatory reactions and enhance oxidative stress, prompting glomerular sclerosis and interstitial fibrosis, to aggravate the decline of renal function. Consequently, uremic toxins play an important role in the worsening of renal and cardiovascular functions. Furthermore, they destroy the quantity and quality of bone. Oral sorbent AST-120 reduces serum levels of uremic toxins in CKD patients by adsorbing the precursors of IS and PCS generated by amino acid metabolism in the intestine. Accordingly, AST-120 decreases the serum IS levels and reduces the production of reactive oxygen species by endothelial cells, to impede the subsequent oxidative stress. This slows the progression of cardiovascular and renal diseases and improves bone metabolism in CKD patients. Although large-scale studies showed no obvious benefits from adding AST-120 to the standard therapy for CKD patients, subsequent sporadic studies may support its use. This article summarizes the mechanisms of the uremic toxins, IS, and PCS, and discusses the multiple effects of AST-120 in CKD patients.
Mechanisms and interventions in peritoneal fibrosis
Peritoneal dialysis (PD) is an attractive treatment for patients with end-stage kidney disease (ESKD). However, long-term peritoneal dialysis is associated with development of functional and structural alterations of the peritoneal membrane. Several factors are implicated in the development of peritoneal fibrosis in PD patients. Inflammatory cytokines, which are induced in the peritoneal cavity during peritonitis, may also induce chronic inflammation and fibrosis. Transforming growth factor β1 (TGF-β1) is generally considered to play an important role in peritoneal fibrosis. The objective of this review is to summarize the mechanisms of peritoneal fibrosis using in vitro and in vivo studies, and the current status and future prospects of interventions in the peritoneal fibrosis.
Utility of remission criteria for the renal prognosis of IgA nephropathy
BackgroundNovel criteria for the remission of Immunoglobulin A nephropathy (IgAN) based on an opinion survey of Japanese nephrologists and literature review were proposed in 2013. This single-center, longitudinal retrospective cohort study was conducted to validate this criteria.MethodsPresent study included the IgAN patients diagnosed between 2001 and 2005 in the Juntendo University Hospital. Remission of hematuria was defined as three consecutive dipstick test results of ( −) to ( ±) or a red blood cell count < 5 in urinary sediment per high-power field during at least 6 months. Remission of proteinuria was defined as three consecutive dipstick results of ( −) to ( ±) during at least 6 months. We categorized four groups according to the remission status which was assessed 2 years after the renal biopsy. The primary outcome was a 50% increase in the serum creatinine over the baseline. We evaluated the slope of eGFR decline (mL/min/1.73 m2/year) and a decrease in the eGFR of 30% from baseline eGFR as the secondary outcome, respectively.ResultsA total of 74 patients (male: 47.3%, median age: 30 years) were included and were followed for a median of 86.5 months. During the period, forty-one patients achieved neither remission of proteinuria nor hematuria (NR). Twelve patients met the primary study outcome. A survival analysis revealed that the NR had the worst prognosis and the steepest slope of eGFR decline.ConclusionAlthough further validation in a large cohort is necessary, these novel remission criteria for IgAN patients appear to predict the renal prognosis.
IgA Nephropathy: Beyond the Half-Century
In 1968, Jean Berger first introduced the medical world to IgA nephropathy (IgAN). Fifty-five years later, its pathogenesis is still unclear, but treatments such as renin–angiotensin–aldosterone system inhibitors (RAAS-Is), tonsillectomies, and glucocorticoids are currently used worldwide. There have been great strides in the past 20 years since the discoveries of the specific dysregulation of mucosal immunity, galactose-deficient IgA1 (Gd-IgA1), and Gd-IgA1 immune complexes in patients with IgAN. According to these findings, a multi-hit hypothesis was developed, and this multi-hit hypothesis has provided several putative therapeutic targets. A number of novel agents, including molecularly targeted drugs for targets such as APRIL, plasma cells, complement systems, and endothelin, are undergoing clinical trials. Some candidate drugs have been found to be effective, with minimal side effects. Over half a century after the discovery of IgAN, these therapies will soon be available for clinical use.
A Panel of Serum Biomarkers Differentiates IgA Nephropathy from Other Renal Diseases
There is increasing evidence that galactose-deficient IgA1 (Gd-IgA1) and Gd-IgA1-containing immune complexes are important for the pathogenesis of IgA nephropathy (IgAN). In the present study, we assessed a novel noninvasive multi-biomarker approach in the diagnostic test for IgAN. We compared serum levels of IgA, IgG, Gd-IgA1, Gd-IgA1-specific IgG and Gd-IgA1-specific IgA in 135 IgAN patients, 79 patients with non-IgAN chronic kidney disease (CKD) controls and 106 healthy controls. Serum was collected at the time of kidney biopsy from all IgAN and CKD patients. Each serum marker was significantly elevated in IgAN patients compared to CKD (P<0.001) and healthy controls (P<0.001). While 41% of IgAN patients had elevated serum Gd-IgA1 levels, 91% of these patients exhibited Gd-IgA1-specific IgG levels above the 90th percentile for healthy controls (sensitivity 89%, specificity 92%). Although up to 25% of CKD controls, particularly those with immune-mediated glomerular diseases including lupus nephritis, also had elevated serum levels of Gd-IgA1-specific IgG, most IgAN patients had elevated levels of Gd-IgA1-specific antibody of both isotypes. Serum levels of Gd-IgA1-specific IgG were associated with renal histological grading. Furthermore, there was a trend toward higher serum levels of Gd-IgA1-specific IgG in IgAN patients with at least moderate proteinuria (≥1.0 g/g), compared to patients with less proteinuria. Serum levels of Gd-IgA1-specific antibodies are elevated in most IgAN patients, and their assessment, together with serum levels of Gd-IgA1, improves the specificity of the assays. Our observations suggest that a panel of serum biomarkers may be helpful in differentiating IgAN from other glomerular diseases.
Changes in Nephritogenic Serum Galactose-Deficient IgA1 in IgA Nephropathy following Tonsillectomy and Steroid Therapy
Recent studies have shown that galactose-deficient IgA1 (GdIgA1) has an important role in the pathogenesis of IgA nephropathy (IgAN). Although emerging data suggest that serum GdIgA1 can be a useful non-invasive IgAN biomarker, the localization of nephritogenic GdIgA1-producing B cells remains unclear. Recent clinical and experimental studies indicate that immune activation tonsillar toll-like receptor (TLR) 9 may be involved in the pathogenesis of IgAN. Here we assessed the possibility of GdIgA1 production in the palatine tonsils in IgAN patients. We assessed changes in serum GdIgA1 levels in IgAN patients with clinical remission of hematuria and proteinuria following combined tonsillectomy and steroid pulse therapy. Further, the association between clinical outcome and tonsillar TLR9 expression was evaluated. Patients (n = 37) were divided into two groups according to therapy response. In one group, serum GdIgA1 levels decreased after tonsillectomy (59%) alone, whereas in the other group most levels only decreased after the addition of steroid pulse therapy to tonsillectomy (41%). The former group showed significantly higher tonsillar TLR9 expression and better improvement in hematuria immediately after tonsillectomy than the latter group. The present study indicates that the palatine tonsils are probably a major sites of GdIgA1-producing cells. However, in some patients these cells may propagate to other lymphoid organs, which may partially explain the different responses observed to tonsillectomy alone. These findings help to clarify some of the clinical observations in the management of IgAN, and may highlight future directions for research.
Pathogenic Role of a Proliferation-Inducing Ligand (APRIL) in Murine IgA Nephropathy
A proliferation-inducing ligand (APRIL) is a member of the tumor necrosis factor (TNF) superfamily. Despite advances in clinical and genetic studies, the details of the pathological roles of APRIL in IgA nephropathy (IgAN) remain to be fully defined. The present study aimed to further assess the pathological role of APRIL using a mouse model of IgAN. Mice with IgAN designated \"grouped ddY\" (gddY) were intraperitoneally administered an anti-APRIL monoclonal antibody (anti-APRIL Ab) or control IgG (Control Ab) twice each week for 2 weeks starting during the early stage of IgAN (6-7 weeks of age). Urinary albumin, serum IgA, and glomerular IgA deposition were evaluated. We further assessed the inflammatory responses during treatment by measuring the levels of the chemokine fractalkine (FKN) and its receptor CX3CR1 as well as the level of peripheral blood monocytosis. Anti-APRIL Ab treatment significantly decreased albuminuria and tissue damage combined with decreases in serum IgA levels and deposition of glomerular IgA. In contrast, the abundance of IgA+/B220+ or CD138+/B220+ B cells in the spleen and bone marrow, respectively, was unchanged. Treating gddY mice with anti-April Ab reduced the overexpression of FKN/CX3CR1 in the kidney and the increase in the population of circulating Gr1-/CD115+ monocytes. The size of the population of Gr1-/CD115+ monocytes correlated with renal FKN and urinary albumin levels. Moreover, mice treated with anti-APRIL Ab exhibited reduced progression of IgAN, serum IgA levels, and glomerular IgA deposition as well as an attenuated inflammatory process mediated by FKN-associated activation of monocytes. To the best of our knowledge, this is the first study to implicate the APRIL signal transduction pathway in the pathogenesis of nephrogenic IgA production. Moreover, our findings identify APRIL as a potential target of therapy.
Novel Biomarkers for the Progression of Diabetic Nephropathy: Soluble TNF Receptors
Despite 2 decades of advances in therapy of diabetic patients, the prevalence of diabetic nephropathy among patients with diabetes has not decreased. However, large-scale multicenter studies have achieved great success in terms of the reduction of albuminuria, suggesting that albuminuria might not be an accurate surrogate marker for slowing the rate of renal function decline. It is important to be able to identify individuals at high risk for renal function decline, or ultimately, end-stage kidney disease (ESKD) and its associated cardiovascular disease (CVD). More sensitive early biomarkers, other than albuminuria and the estimated glomerular filtration rate (eGFR), should be required. Recently, serum concentrations of soluble tumor necrosis factor (TNF), receptor 1 (TNFR1), and TNFR2 have predicted future GFR loss and ESKD in patients of a wide variety of stages and both types of diabetes. Longitudinal interventional studies are needed to validate these biomarkers in a broad range of populations prior to implementation in routine diabetes management.
Circulating TNF Receptors 1 and 2 Are Associated with the Severity of Renal Interstitial Fibrosis in IgA Nephropathy
The current study aimed to examine whether the levels of TNF receptors 1 and 2 (TNFR1 and TNFR2) in serum and urine were associated with other markers of kidney injury and renal histological findings, including TNFR expression, in IgA nephropathy (IgAN). The levels of the parameters of interest were measured by immunoassay in 106 biopsy-proven IgAN patients using samples obtained immediately before renal biopsy and in 34 healthy subjects. Renal histological findings were evaluated using immunohistochemistry. The levels of serum TNFRs were higher in IgAN patients than in healthy subjects. The levels of both TNFRs in serum or urine were strongly correlated with each other (r > 0.9). Serum TNFR levels were positively correlated with the urinary protein to creatinine ratio (UPCR) and four markers of tubular damage of interest (N-acetyl-β-D-glucosaminidase [NAG], β2 microglobulin [β2m], liver-type fatty acid-binding protein [L-FABP], and kidney injury molecule-1 [KIM-1]) and negatively correlated with estimated glomerular filtration rate (eGFR). Patients in the highest tertile of serum TNFR levels showed more severe renal interstitial fibrosis than did those in the lowest or second tertiles. The tubulointerstitial TNFR2-, but not TNFR1-, positive area was significantly correlated with the serum levels of TNFRs and eGFR. Stepwise multiple regression analysis revealed that elevated serum TNFR1 or TNFR2 levels were a significant determinant of renal interstitial fibrosis after adjusting for eGFR, UPCR, and other markers of tubular damage. In conclusion, elevated serum TNFR levels were significantly associated with the severity of renal interstitial fibrosis in IgAN patients. However, the source of TNFRs in serum and urine remains unclear.