Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
36 result(s) for "Tabarki, Brahim"
Sort by:
A homozygous nonsense mutation in DCBLD2 is a candidate cause of developmental delay, dysmorphic features and restrictive cardiomyopathy
DCBLD 2 encodes discodin, CUB and LCCL domain-containing protein 2, a type-I transmembrane receptor that is involved in intracellular receptor signalling pathways and the regulation of cell growth. In this report, we describe a 5-year-old female who presented severe clinical features, including restrictive cardiomyopathy, developmental delay, spasticity and dysmorphic features. Trio-whole-exome sequencing and segregation analysis were performed to identify the genetic cause of the disease within the family. A novel homozygous nonsense variant in the DCBLD2 gene (c.80G > A, p.W27*) was identified as the most likely cause of the patient’s phenotype. This nonsense variant falls in the extracellular N-terminus of  DCBLD2 and thus might affect proper protein function of the transmembrane receptor. A number of in vitro investigations were performed on the proband’s skin fibroblasts compared to normal fibroblasts, which allowed a comprehensive assessment resulting in the functional characterization of the identified DCBLD2 nonsense variant in different cellular processes. Our data propose a significant association between the identified variant and the observed reduction in cell proliferation, cell cycle progression, intracellular ROS, and Ca2 + levels, which would likely explain the phenotypic presentation of the patient as associated with lethal restrictive cardiomyopathy.
Characterizing the morbid genome of ciliopathies
Background Ciliopathies are clinically diverse disorders of the primary cilium. Remarkable progress has been made in understanding the molecular basis of these genetically heterogeneous conditions; however, our knowledge of their morbid genome, pleiotropy, and variable expressivity remains incomplete. Results We applied genomic approaches on a large patient cohort of 371 affected individuals from 265 families, with phenotypes that span the entire ciliopathy spectrum. Likely causal mutations in previously described ciliopathy genes were identified in 85% (225/265) of the families, adding 32 novel alleles. Consistent with a fully penetrant model for these genes, we found no significant difference in their “mutation load” beyond the causal variants between our ciliopathy cohort and a control non-ciliopathy cohort. Genomic analysis of our cohort further identified mutations in a novel morbid gene TXNDC15 , encoding a thiol isomerase, based on independent loss of function mutations in individuals with a consistent ciliopathy phenotype (Meckel-Gruber syndrome) and a functional effect of its deficiency on ciliary signaling. Our study also highlighted seven novel candidate genes ( TRAPPC3 , EXOC3L2 , FAM98C , C17orf61 , LRRCC1 , NEK4 , and CELSR2 ) some of which have established links to ciliogenesis. Finally, we show that the morbid genome of ciliopathies encompasses many founder mutations, the combined carrier frequency of which accounts for a high disease burden in the study population. Conclusions Our study increases our understanding of the morbid genome of ciliopathies. We also provide the strongest evidence, to date, in support of the classical Mendelian inheritance of Bardet-Biedl syndrome and other ciliopathies.
Combining exome/genome sequencing with data repository analysis reveals novel gene–disease associations for a wide range of genetic disorders
Within this study, we aimed to discover novel gene–disease associations in patients with no genetic diagnosis after exome/genome sequencing (ES/GS). We followed two approaches: (1) a patient-centered approach, which after routine diagnostic analysis systematically interrogates variants in genes not yet associated to human diseases; and (2) a gene variant centered approach. For the latter, we focused on de novo variants in patients that presented with neurodevelopmental delay (NDD) and/or intellectual disability (ID), which are the most common reasons for genetic testing referrals. Gene–disease association was assessed using our data repository that combines ES/GS data and Human Phenotype Ontology terms from over 33,000 patients. We propose six novel gene–disease associations based on 38 patients with variants in the BLOC1S1, IPO8, MMP15, PLK1, RAP1GDS1, and ZNF699 genes. Furthermore, our results support causality of 31 additional candidate genes that had little published evidence and no registered OMIM phenotype (56 patients). The phenotypes included syndromic/nonsyndromic NDD/ID, oral–facial–digital syndrome, cardiomyopathies, malformation syndrome, short stature, skeletal dysplasia, and ciliary dyskinesia. Our results demonstrate the value of data repositories which combine clinical and genetic data for discovering and confirming gene–disease associations. Genetic laboratories should be encouraged to pursue such analyses for the benefit of undiagnosed patients and their families.
Mitochondrial “dysmorphology” in variant classification
Mitochondrial disorders are challenging to diagnose. Exome sequencing has greatly enhanced the diagnostic precision of these disorders although interpreting variants of uncertain significance (VUS) remains a formidable obstacle. Whether specific mitochondrial morphological changes can aid in the classification of these variants is unknown. Here, we describe two families (four patients), each with a VUS in a gene known to affect the morphology of mitochondria through a specific role in the fission–fusion balance. In the first, the missense variant in MFF, encoding a fission factor, was associated with impaired fission giving rise to a characteristically over-tubular appearance of mitochondria. In the second, the missense variant in DNAJA3, which has no listed OMIM phenotype, was associated with fragmented appearance of mitochondria consistent with its published deficiency states. In both instances, the highly specific phenotypes allowed us to upgrade the classification of the variants. Our results suggest that, in select cases, mitochondrial “dysmorphology” can be helpful in interpreting variants to reach a molecular diagnosis.
Biallelic variants in the transcription factor PAX7 are a new genetic cause of myopathy
Purpose Skeletal muscle growth and regeneration rely on muscle stem cells, called satellite cells. Specific transcription factors, particularly PAX7, are key regulators of the function of these cells. Knockout of this factor in mice leads to poor postnatal survival; however, the consequences of a lack of PAX7 in humans have not been established. Methods Here, we study five individuals with myopathy of variable severity from four unrelated consanguineous couples. Exome sequencing identified pathogenic variants in the PAX7 gene. Clinical examination, laboratory tests, and muscle biopsies were performed to characterize the disease. Results The disease was characterized by hypotonia, ptosis, muscular atrophy, scoliosis, and mildly dysmorphic facial features. The disease spectrum ranged from mild to severe and appears to be progressive. Muscle biopsies showed the presence of atrophic fibers and fibroadipose tissue replacement, with the absence of myofiber necrosis. A lack of PAX7 expression was associated with satellite cell pool exhaustion; however, the presence of residual myoblasts together with regenerating myofibers suggest that a population of PAX7-independent myogenic cells partially contributes to muscle regeneration. Conclusion These findings show that biallelic variants in the master transcription factor PAX7 cause a new type of myopathy that specifically affects satellite cell survival.
KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome
Background Joubert syndrome (JBTS) and related disorders are defined by cerebellar malformation (molar tooth sign), together with neurological symptoms of variable expressivity. The ciliary basis of Joubert syndrome related disorders frequently extends the phenotype to tissues such as the eye, kidney, skeleton and craniofacial structures. Results Using autozygome and exome analyses, we identified a null mutation in KIAA0556 in a multiplex consanguineous family with hallmark features of mild Joubert syndrome. Patient-derived fibroblasts displayed reduced ciliogenesis potential and abnormally elongated cilia. Investigation of disease pathophysiology revealed that Kiaa0556 -/- null mice possess a Joubert syndrome-associated brain-restricted phenotype. Functional studies in Caenorhabditis elegans nematodes and cultured human cells support a conserved ciliary role for KIAA0556 linked to microtubule regulation. First, nematode KIAA0556 is expressed almost exclusively in ciliated cells, and the worm and human KIAA0556 proteins are enriched at the ciliary base. Second, C. elegans KIAA0056 regulates ciliary A-tubule number and genetically interacts with an ARL13B ( JBTS8 ) orthologue to control cilium integrity. Third, human KIAA0556 binds to microtubules in vitro and appears to stabilise microtubule networks when overexpressed. Finally, human KIAA0556 biochemically interacts with ciliary proteins and p60/p80 katanins. The latter form a microtubule-severing enzyme complex that regulates microtubule dynamics as well as ciliary functions. Conclusions We have identified KIAA0556 as a novel microtubule-associated ciliary base protein mutated in Joubert syndrome. Consistent with the mild patient phenotype, our nematode, mice and human cell data support the notion that KIAA0556 has a relatively subtle and variable cilia-related function, which we propose is related to microtubule regulation.
Is routine preoperative head ultrasound screening before congenital cardiac surgery mandatory?
Background The practice of routine preoperative head ultrasound (HUS) screening for infants and neonates undergoing surgery for congenital heart disease has been widely adopted; however, its usefulness is still unclear. Therefore, this study aimed to determine the prevalence of preoperative HUS abnormalities in neonates and infants with congenital heart disease, its association with postoperative neurological outcomes, and its sensitivity and specificity in detecting preoperative abnormalities. This retrospective cohort study was conducted between 2015 and 2022 at a tertiary referral center. The study included 596 children who were scheduled for cardiac surgery for congenital heart disease and who had preoperative HUS. Results The prevalence of preoperative HUS abnormalities was 23% (n = 137). There were no differences in the baseline characteristics between patients with normal and abnormal HUS. The most common abnormality reported by HUS was intraventricular hemorrhage (IVH) (n = 65, 47.45%). Surgery was done in 417 (78.53%) with no IVH vs. 50 (76.92%) with IVH (P = 0.766). Mortality was statistically not significantly higher in patients with abnormal HUS (14% vs. 8%; P = 0.092). Twenty-seven patients developed new postoperative neurological complications (5.78%), with no difference between the groups (5.7% vs. 6.1%, P = 0.893). Preoperative neurological abnormalities (OR: 1.24 (95% CI: 1.08-1.41); P = 0.002) and intrauterine growth retardation (OR: 5.37 (95% CI: 1.61-17.88), P = 0.006) were significantly associated with new postoperative neurological events. The sensitivity of HUS compared with that of MRI was 51%, and the specificity was 83%. Conclusions The HUS showed a high percentage of abnormal findings in children with congenital heart disease; however, these findings were not necessarily correlated with the outcome. The study findings do not support the routine use of HUS for neonates and infants undergoing surgery for congenital heart disease. Abnormal HUS findings did not significantly impact surgical rates or postoperative outcomes.
Biotinidase Deficiency: Report of a Tunisian Case With Neuromyelitis Optica‐Like Presentation and Review of the Literature
Biotinidase deficiency is a rare treatable metabolic disorder caused by biallelic mutations in the BTD gene. In the absence of neonatal screening and treatment, affected children develop typically optic atrophy, hypotonia, early onset seizures, developmental delay, and cutaneous manifestations. Some patients may have atypical presentations mimicking a demyelinating disorder of the central nervous system. We report on the first genetically confirmed Tunisian patient with biotinidase deficiency who presented initially with cutaneous manifestations misdiagnosed as dermatophytosis and subsequently with an opticospinal syndrome leading to the diagnosis of seronegative neuromyelitis optica spectrum disorder that was dramatically improved under biotin. We carry on a review of the literature of the previously reported pediatric cases with an opticospinal syndrome revealing biotinidase deficiency.
Targeted SLC19A3 gene sequencing of 3000 Saudi newborn: a pilot study toward newborn screening
Background Biotin–thiamine‐responsive basal ganglia disease (BTBGD) is an autosomal recessive neurometabolic disorder mostly presented in children. The disorder is described as having subacute encephalopathy with confusion, dystonia, and dysarthria triggered by febrile illness that leads to neuroregression and death if untreated. Using biotin and thiamine at an early stage of the disease can lead to significant improvement. Methods BTBGD is a treatable disease if diagnosed at an early age and has been frequently reported in Saudi population. Keeping this in mind, the current study screened 3000 Saudi newborns for the SLC19A3 gene mutations using target sequencing, aiming to determine the carrier frequency in Saudi Population and whether BTBGD is a good candidate to be included in the newborn‐screened disorders. Results Using targeted gene sequencing, DNA from 3000 newborns Saudi was screened for the SLC19A3 gene mutations using standard methods. Screening of the SLC19A3 gene revealed a previously reported heterozygous missense mutation (c.1264A>G (p.Thr422Ala) in six unrelated newborns. No probands having homozygous pathogenic mutations were found in the studied cohort. The variant has been frequently reported previously in homozygous state in Saudi population, making it a hot spot mutation. The current study showed that the carrier frequency of SLC19A3 gene mutation is 1 of 500 in Saudi newborns. Conclusion For the first time in the literature, we determined the carrier frequency of SLC19A3 gene mutation in Saudi population. The estimated prevalence is too rare in Saudi population (at least one in million); therefore, the data are not in favor of including such very rare disorders in newborn screening program at population level. However, a larger cohort is needed for a more accurate estimate.
A Gene Encoding a Putative FAD-Dependent L-2-Hydroxyglutarate Dehydrogenase Is Mutated in L-2-Hydroxyglutaric Aciduria
The purpose of this study was to identify the biochemical and genetic defect in L-2-hydroxyglutaric aciduria, a neurometabolic disorder characterized by the presence of elevated concentrations of L-2-hydroxyglutaric acid in urine, plasma, and cerebrospinal fluid. Evidence is provided for the existence in rat tissues of a FAD-dependent enzyme catalyzing specifically the oxidation of L-2-hydroxyglutarate to α-ketoglutarate. This enzyme is mainly expressed in liver and kidney but also at lower levels in heart, brain, and other tissues. Subcellular fractionation indicates that the liver enzyme is present in mitochondria, where it is bound to membranes. Based on this information, a database search led to the identification of a gene encoding a human hypothetical protein homologous to bacterial FAD-dependent malate dehydrogenases and targeted to mitochondria. The gene encoding this protein, present on chromosome 14q22.1, was found to be in a region homozygous in patients with L-2-hydroxyglutaric aciduria from two consanguineous families. Three mutations that replaced a highly conserved residue (Lys-71-Glu and Glu-176-Asp) or removed exon 9 were identified in homozygous state in patients from three distinct families and were found to cosegregate with the disease. It is concluded that L-2-hydroxyglutarate is normally metabolized to α-ketoglutarate in mammalian tissues and that L-2-hydroxyglutaric aciduria is caused by mutations in the gene that most likely encodes L-2-hydroxyglutarate dehydrogenase. The pathological findings observed in this metabolic disorder must therefore be due to a toxic effect of L-2-hydroxyglutarate on the central nervous system.