Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
51 result(s) for "Tadic, Ivan"
Sort by:
Tropospheric ozone production and chemical regime analysis during the COVID-19 lockdown over Europe
The COVID-19 (coronavirus disease 2019) European lockdowns have led to a significant reduction in the emissions of primary pollutants such as NO (nitric oxide) and NO2 (nitrogen dioxide). As most photochemical processes are related to nitrogen oxide (NOx≡ NO + NO2) chemistry, this event has presented an exceptional opportunity to investigate its effects on air quality and secondary pollutants, such as tropospheric ozone (O3). In this study, we present the effects of the COVID-19 lockdown on atmospheric trace gas concentrations, net ozone production rates (NOPRs) and the dominant chemical regime throughout the troposphere based on three different research aircraft campaigns across Europe. These are the UTOPIHAN (Upper Tropospheric Ozone: Processes Involving HOx and NOx) campaigns in 2003 and 2004, the HOOVER (HOx over Europe) campaigns in 2006 and 2007, and the BLUESKY campaign in 2020, the latter performed during the COVID-19 lockdown. We present in situ observations and simulation results from the ECHAM5 (fifth-generation European Centre Hamburg general circulation model, version 5.3.02)/MESSy2 (second-generation Modular Earth Submodel System, version 2.54.0) Atmospheric Chemistry (EMAC), model which allows for scenario calculations with business-as-usual emissions during the BLUESKY campaign, referred to as the “no-lockdown scenario”. We show that the COVID-19 lockdown reduced NO and NO2 mixing ratios in the upper troposphere by around 55 % compared to the no-lockdown scenario due to reduced air traffic. O3 production and loss terms reflected this reduction with a deceleration in O3 cycling due to reduced mixing ratios of NOx, while NOPRs were largely unaffected. We also study the role of methyl peroxyradicals forming HCHO (αCH3O2) to show that the COVID-19 lockdown shifted the chemistry in the upper-troposphere–tropopause region to a NOx-limited regime during BLUESKY. In comparison, we find a volatile organic compound (VOC)-limited regime to be dominant during UTOPIHAN.
Shipborne measurements of total OH reactivity around the Arabian Peninsula and its role in ozone chemistry
The Arabian Peninsula is characterized by high and increasing levels of photochemical air pollution. Strong solar irradiation, high temperatures and large anthropogenic emissions of reactive trace gases result in intense photochemical activity, especially during the summer months. However, air chemistry measurements in the region are scarce. In order to assess regional pollution sources and oxidation rates, the first ship-based direct measurements of total OH reactivity were performed in summer 2017 from a vessel traveling around the peninsula during the AQABA (Air Quality and Climate Change in the Arabian Basin) campaign. Total OH reactivity is the total loss frequency of OH radicals due to all reactive compounds present in air and defines the local lifetime of OH, the most important oxidant in the troposphere. During the AQABA campaign, the total OH reactivity ranged from below the detection limit (5.4 s−1) over the northwestern Indian Ocean (Arabian Sea) to a maximum of 32.8±9.6 s−1 over the Arabian Gulf (also known as Persian Gulf) when air originated from large petroleum extraction/processing facilities in Iraq and Kuwait. In the polluted marine regions, OH reactivity was broadly comparable to highly populated urban centers in intensity and composition. The permanent influence of heavy maritime traffic over the seaways of the Red Sea, Gulf of Aden and Gulf of Oman resulted in median OH sinks of 7.9–8.5 s−1. Due to the rapid oxidation of direct volatile organic compound (VOC) emissions, oxygenated volatile organic compounds (OVOCs) were observed to be the main contributor to OH reactivity around the Arabian Peninsula (9 %–35 % by region). Over the Arabian Gulf, alkanes and alkenes from the petroleum extraction and processing industry were an important OH sink with ∼9 % of total OH reactivity each, whereas NOx and aromatic hydrocarbons (∼10 % each) played a larger role in the Suez Canal, which is influenced more by ship traffic and urban emissions. We investigated the number and identity of chemical species necessary to explain the total OH sink. Taking into account ∼100 individually measured chemical species, the observed total OH reactivity can typically be accounted for within the measurement uncertainty (50 %), with 10 dominant trace gases accounting for 20 %–39 % of regional total OH reactivity. The chemical regimes causing the intense ozone pollution around the Arabian Peninsula were investigated using total OH reactivity measurements. Ozone vs. OH reactivity relationships were found to be a useful tool for differentiating between ozone titration in fresh emissions and photochemically aged air masses. Our results show that the ratio of NOx- and VOC-attributed OH reactivity was favorable for ozone formation almost all around the Arabian Peninsula, which is due to NOx and VOCs from ship exhausts and, often, oil/gas production. Therewith, total OH reactivity measurements help to elucidate the chemical processes underlying the extreme tropospheric ozone concentrations observed in summer over the Arabian Basin.
Numerical simulation of the impact of COVID-19 lockdown on tropospheric composition and aerosol radiative forcing in Europe
Aerosols influence the Earth's energy balance directly by modifying the radiation transfer and indirectly by altering the cloud microphysics. Anthropogenic aerosol emissions dropped considerably when the global COVID-19 pandemic resulted in severe restraints on mobility, production, and public life in spring 2020. We assess the effects of these reduced emissions on direct and indirect aerosol radiative forcing over Europe, excluding contributions from contrails. We simulate the atmospheric composition with the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model in a baseline (business-as-usual) and a reduced emission scenario. The model results are compared to aircraft observations from the BLUESKY aircraft campaign performed in May–June 2020 over Europe. The model agrees well with most of the observations, except for sulfur dioxide, particulate sulfate, and nitrate in the upper troposphere, likely due to a biased representation of stratospheric aerosol chemistry and missing information about volcanic eruptions. The comparison with a baseline scenario shows that the largest relative differences for tracers and aerosols are found in the upper troposphere, around the aircraft cruise altitude, due to the reduced aircraft emissions, while the largest absolute changes are present at the surface. We also find an increase in all-sky shortwave radiation of 0.21 ± 0.05 W m−2 at the surface in Europe for May 2020, solely attributable to the direct aerosol effect, which is dominated by decreased aerosol scattering of sunlight, followed by reduced aerosol absorption caused by lower concentrations of inorganic and black carbon aerosols in the troposphere. A further increase in shortwave radiation from aerosol indirect effects was found to be much smaller than its variability. Impacts on ice crystal concentrations, cloud droplet number concentrations, and effective crystal radii are found to be negligible.
Severe atmospheric pollution in the Middle East is attributable to anthropogenic sources
In the Middle East, desert dust is assumed to dominate air pollution, being in permanent violation of public health guidelines. Here we present ship-borne measurements from around the Arabian Peninsula and modeling results to show that hazardous fine particulate matter is to a large extent of anthropogenic origin (>90%), and distinct from the less harmful, coarse desert dust particles. Conventionally, it was understood that desert dust dominates both the fine and coarse aerosol size fractions, which obscures the anthropogenic signal. We find that the annual excess mortality from the exposure to air pollution is 745 (514-1097) per 100,000 per year, similar to that of other leading health risk factors, like high cholesterol and tobacco smoking. Furthermore, anthropogenic pollution particles account for a major part (~53%) of the visible aerosol optical depth. Therefore, in the Middle East anthropogenic air pollution is a leading health risk and an important climatic factor.
Net ozone production and its relationship to nitrogen oxides and volatile organic compounds in the marine boundary layer around the Arabian Peninsula
Strongly enhanced tropospheric ozone (O3) mixing ratios have been reported in the Arabian Basin, a region with intense solar radiation and high concentrations of O3 precursors such as nitrogen oxides (NOx) and volatile organic compounds (VOCs). To analyze photochemical O3 production in the marine boundary layer (MBL) around the Arabian Peninsula, we use shipborne observations of NO, NO2, O3, OH, HO2, HCHO, the actinic flux, water vapor, pressure and temperature obtained during the summer 2017 Air Quality and Climate in the Arabian Basin (AQABA) campaign, and we compare them to simulation results from the ECHAM-MESSy Atmospheric Chemistry (EMAC) general circulation model. Net O3 production rates (NOPRs) were greatest over both the Gulf of Oman and the northern Red Sea (16 ppbv d−1) and over the Arabian Gulf (32 ppbv d−1). The NOPR over the Mediterranean, the southern Red Sea and the Arabian Sea did not significantly deviate from zero; however, the results for the Arabian Sea indicated weak net O3 production of 5 ppbv d−1 as well as net O3 destruction over the Mediterranean and the southern Red Sea with values of −1 and −4 ppbv d−1, respectively. Constrained by HCHO∕NO2 ratios, our photochemistry calculations show that net O3 production in the MBL around the Arabian Peninsula mostly occurs in NOx-limited regimes with a significant share of O3 production occurring in the transition regime between NOx limitation and VOC limitation over the Mediterranean and more significantly over the northern Red Sea and Oman Gulf.
The Red Sea Deep Water is a potent source of atmospheric ethane and propane
Non-methane hydrocarbons (NMHCs) such as ethane and propane are significant atmospheric pollutants and precursors of tropospheric ozone, while the Middle East is a global emission hotspot due to  extensive oil and gas production. Here we compare in situ hydrocarbon measurements, performed around the Arabian Peninsula, with global model simulations that include current emission inventories (EDGAR) and state-of-the-art atmospheric circulation and chemistry mechanisms (EMAC model). While measurements of high mixing ratios over the Arabian Gulf are adequately simulated, strong underprediction by the model was found over the northern Red Sea. By examining the individual sources in the model and by utilizing air mass back-trajectory investigations and Positive Matrix Factorization (PMF) analysis, we deduce that Red Sea Deep Water (RSDW) is an unexpected, potent source of atmospheric NMHCs. This overlooked underwater source is comparable with total anthropogenic emissions from entire Middle Eastern countries, and significantly impacts the regional atmospheric chemistry. The Middle East is known to emit large amounts of non-methane hydrocarbon pollutants to the atmosphere, but the sources are poorly characterized. Here the authors discover a new source—deep water in the Red Sea—and calculate that its emissions exceed rates of several high gas-production countries.
Shipborne measurements of methane and carbon dioxide in the Middle East and Mediterranean areas and the contribution from oil and gas emissions
The increase of atmospheric methane (CH4) and carbon dioxide (CO2), two of the main anthropogenic greenhouse gases, is largely driven by fossil sources. Sources and sinks remain insufficiently characterized in the Mediterranean and Middle East areas, where very few in situ measurements are available. We measured the atmospheric mixing ratios of CH4 and CO2 by ship in the region in July and August 2017. High mixing ratios were observed over the Suez Canal, Red Sea and Arabian Gulf, while generally lower mixing ratios were observed over the Gulf of Aden and Gulf of Oman. We probe the origin of the CO2 and CH4 excess mixing ratio by using correlations with light alkanes and through the use of a Lagrangian model coupled to two different emission inventories of anthropogenic sources. We find that the CO2 and especially the CH4 enhancements are mainly linked to nearby oil and gas (OG) activities over the Arabian Gulf and a mixture of other sources over the Red Sea. The isomeric ratio of pentane is shown to be a useful indicator of the OG component of atmospheric CH4 at the regional level. Upstream emissions linked to oil in the northern Arabian Gulf seem to be underestimated, while gas-related emissions in the southern Gulf are overestimated in our simulations. Our results highlight the need for improvement of inventories in the area to better characterize the changes in magnitude and the complex distribution of the OG sources in the Middle East.
Central role of nitric oxide in ozone production in the upper tropical troposphere over the Atlantic Ocean and western Africa
Mechanisms of tropospheric ozone (O3) formation are generally well understood. However, studies reporting on net ozone production rates (NOPRs) directly derived from in situ observations are challenging and are sparse in number. To analyze the role of nitric oxide (NO) in net ozone production in the upper tropical troposphere above the Atlantic Ocean and western Africa, we present in situ trace gas observations obtained during the CAFE-Africa (Chemistry of the Atmosphere: Field Experiment in Africa) campaign in August and September 2018. The vertical profile of in situ measured NO along the flight tracks reveals lowest NO mixing ratios of less than 20 pptv between 2 and 8 km altitude and highest mixing ratios of 0.15–0.2 ppbv above 12 km altitude. Spatial distribution of tropospheric NO above 12 km altitude shows that the sporadically enhanced local mixing ratios (>0.4 ppbv) occur over western Africa, which we attribute to episodic lightning events. Measured O3 shows little variability in mixing ratios at 60–70 ppbv, with slightly decreasing and increasing tendencies towards the boundary layer and stratosphere, respectively. Concurrent measurements of CO, CH4, OH, HO2 and H2O enable calculations of NOPRs along the flight tracks and reveal net ozone destruction at −0.6 to −0.2 ppbv h−1 below 6 km altitude and balance of production and destruction around 7–8 km altitude. We report vertical average NOPRs of 0.2–0.4 ppbv h−1 above 12 km altitude with NOPRs occasionally larger than 0.5 ppbv h−1 over western Africa coincident with enhanced NO. We compare the observational results to simulated data retrieved from the general circulation model ECHAM/MESSy Atmospheric Chemistry (EMAC). Although the comparison of mean vertical profiles of NO and O3 indicates good agreement, local deviations between measured and modeled NO are substantial. The vertical tendencies in NOPRs calculated from simulated data largely reproduce those from in situ experimental data. However, the simulation results do not agree well with NOPRs over western Africa. Both measurements and simulations indicate that ozone formation in the upper tropical troposphere is NOx limited.
Influence of vessel characteristics and atmospheric processes on the gas and particle phase of ship emission plumes: in situ measurements in the Mediterranean Sea and around the Arabian Peninsula
A total of 252 emission plumes of ships operating in the Mediterranean Sea and around the Arabian Peninsula were investigated using a comprehensive dataset of gas- and submicron-particle-phase properties measured during the 2-month shipborne AQABA (Air Quality and Climate Change in the Arabian Basin) field campaign in summer 2017. The post-measurement identification of the corresponding ship emission events in the measured data included the determination of the plume sources (up to 38 km away) as well as the plume ages (up to 115 min) and was based on commercially available historical records of the Automatic Identification System. The dispersion lifetime of chemically inert CO2 in the ship emission plumes was determined as 70±15 min, resulting in levels indistinguishable from the marine background after 260±60 min. Emission factors (EFs) as quantities that are independent of plume dilution were calculated and used for the investigation of influences on ship emission plumes caused by ship characteristics and the combustion process as well as by atmospheric processes during the early stage of exhaust release and during plume ageing. Combustion efficiency and therefore emission factors of black carbon and NOx were identified to depend mostly on the vessel speed and gross tonnage. Moreover, larger ships, associated with higher engine power, were found to use fuel with higher sulfur content and have higher gas-phase SO2, particulate sulfate, particulate organics, and particulate matter EFs. Despite the independence of EFs of dilution, a significant influence of the ambient wind speed on the particle number and mass EFs was observed that can be traced back to enhanced particle coagulation in the case of slower dilution and suppressed vapour condensation on particles in the case of faster dilution of the emission plume. Atmospheric reactions and processes in ship emission plumes were investigated that include NOx and O3 chemistry, gas-to-particle conversion of NOx and SO2, and the neutralisation of acids in the particle phase through the uptake of ambient gas-phase ammonia, the latter two of which cause the inorganic particulate content to increase and the organic fraction to decrease with increasing plume age. The results allow for us to describe the influences on (or processes in) ship emission plumes quantitatively by parameterisations, which could be used for further refinement of atmospheric models, and to identify which of these processes are the most important ones.
Polycyclic aromatic hydrocarbons (PAHs) and their alkylated, nitrated and oxygenated derivatives in the atmosphere over the Mediterranean and Middle East seas
Polycyclic aromatic hydrocarbons (PAHs) and their alkylated (RPAHs), nitrated (NPAHs) and oxygenated (OPAHs) derivatives are air pollutants. Many of these substances are long-lived, can undergo long-range atmospheric transport and adversely affect human health upon exposure. However, the occurrence and fate of these air pollutants have hardly been studied in the marine atmosphere. In this study, we report the atmospheric concentrations over the Mediterranean Sea, the Red Sea, the Arabian Sea, the Gulf of Oman and the Arabian Gulf, determined during the AQABA (Air Quality and Climate Change in the Arabian Basin) project, a comprehensive ship-borne campaign in summer 2017. The average concentrations of ∑26PAHs, ∑19RPAHs, ∑11OPAHs and ∑17NPAHs, in the gas and particulate phases, were 2.99 ± 3.35 ng m−3, 0.83 ± 0.87 ng m−3, 0.24 ± 0.25 ng m−3 and 4.34 ± 7.37 pg m−3, respectively. The Arabian Sea region was the cleanest for all substance classes, with concentrations among the lowest ever reported. Over the Mediterranean Sea, we found the highest average burden of ∑26PAHs and ∑11OPAHs, while the ∑17NPAHs were most abundant over the Arabian Gulf (known also as the Persian Gulf). 1,4-Naphthoquinone (1,4-O2NAP) followed by 9-fluorenone and 9,10-anthraquinone were the most abundant studied OPAHs in most samples. The NPAH composition pattern varied significantly across the regions, with 2-nitronaphthalene (2-NNAP) being the most abundant NPAH. According to source apportionment investigations, the main sources of PAH derivatives in the region were ship exhaust emissions, residual oil combustion and continental pollution. All OPAHs and NPAHs except 2-nitrofluoranthene (2-NFLT), which were frequently detected during the campaign, showed elevated concentrations in fresh shipping emissions. In contrast, 2-NFLT and 2-nitropyrene (2-NPYR) were highly abundant in aged shipping emissions due to secondary formation. Apart from 2-NFLT and 2-NPYR, benz(a)anthracene-7,12-dione and 2-NNAP also had significant photochemical sources. Another finding was that the highest concentrations of PAHs, OPAHs and NPAHs were found in the sub-micrometre fraction of particulate matter (PM1).