Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Takafumi Nobuchi"
Sort by:
Engineered exosomes delivering specific tumor-suppressive RNAi attenuate oral cancer progression
Exosomes are involved in a wide range of biological processes in human cells. Considerable evidence suggests that engineered exosomes (eExosomes) containing therapeutic agents can attenuate the oncogenic activity of human cancer cells. Despite its biomedical relevance, no information has been available for oral squamous cell carcinoma (OSCC), and therefore the development of specific OSCC-targeting eExosomes (octExosomes) is urgently needed. We demonstrated that exosomes from normal fibroblasts transfected with Epstein–Barr Virus Induced-3 ( EBI3 ) cDNA were electroporated with siRNA of lymphocyte cytoplasmic protein 1 ( LCP1 ), as octExosomes, and a series of experiments were performed to evaluate the loading specificity/effectiveness and their anti-oral cancer cell activities after administration of octExosomes. These experiments revealed that octExosomes were stable, effective for transferring si LCP1 into OSCC cells and LCP1 was downregulated in OSCC cells with octExosomes as compared with their counterparts, leading to a significant tumor-suppressive effect in vitro and in vivo. Here we report the development of a new valuable tool for inhibiting tumor cells. By engineering exosomes, si LCP1 was transferred to specifically suppress oncogenic activity of OSCC cells. Inhibition of other types of human malignant cells merits further study.
Ginkgolide B Regulates CDDP Chemoresistance in Oral Cancer via the Platelet-Activating Factor Receptor Pathway
The platelet-activating factor receptor (PAFR) is a key molecule that participates in intracellular signaling pathways, including regulating the activation of kinases. It is involved in cancer progression, but the detailed mechanism of its chemosensitivity is unknown. The purpose of the current study was to elucidate the mechanism regulating cisplatin (CDDP) sensitivity through PAFR functions in oral squamous cell carcinoma (OSCC). We first analyzed the correlation between PAFR expression and CDDP sensitivity in seven OSCC-derived cell lines based upon cell viability assays. Among them, we isolated 2 CDDP-resistant cell lines (Ca9-22 and Ho-1-N-1). In addition to conducting PAFR-knockdown (si ) experiments, we found that ginkgolide B (GB), a specific inhibitor of PAFR, enhanced both CDDP chemosusceptibility and apoptosis. We next evaluated the downstream signaling pathway of PAFR in si -treated cells and GB-treated cells after CDDP treatment. In both cases, we observed decreased phosphorylation of ERK and Akt and increased expression of cleaved caspase-3. These results suggest that PAFR is a therapeutic target for modulating CDDP sensitivity in OSCC cells. Thus, GB may be a novel drug that could enhance combination chemotherapy with CDDP for OSCC patients.
Ginkgolide B Regulates CDDP Chemoresistance in Oral Cancer via the Platelet-Activating Factor Receptor Pathway
The platelet-activating factor receptor (PAFR) is a key molecule that participates in intracellular signaling pathways, including regulating the activation of kinases. It is involved in cancer progression, but the detailed mechanism of its chemosensitivity is unknown. The purpose of the current study was to elucidate the mechanism regulating cisplatin (CDDP) sensitivity through PAFR functions in oral squamous cell carcinoma (OSCC). We first analyzed the correlation between PAFR expression and CDDP sensitivity in seven OSCC-derived cell lines based upon cell viability assays. Among them, we isolated 2 CDDP-resistant cell lines (Ca9-22 and Ho-1-N-1). In addition to conducting PAFR-knockdown (siPAFR) experiments, we found that ginkgolide B (GB), a specific inhibitor of PAFR, enhanced both CDDP chemosusceptibility and apoptosis. We next evaluated the downstream signaling pathway of PAFR in siPAFR-treated cells and GB-treated cells after CDDP treatment. In both cases, we observed decreased phosphorylation of ERK and Akt and increased expression of cleaved caspase-3. These results suggest that PAFR is a therapeutic target for modulating CDDP sensitivity in OSCC cells. Thus, GB may be a novel drug that could enhance combination chemotherapy with CDDP for OSCC patients.