Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
49 result(s) for "Takasu, Masaki"
Sort by:
Detection of non-targeted transgenes by whole-genome resequencing for gene-doping control
Gene doping has raised concerns in human and equestrian sports and the horseracing industry. There are two possible types of gene doping in the sports and racing industry: (1) administration of a gene-doping substance to postnatal animals and (2) generation of genetically engineered animals by modifying eggs. In this study, we aimed to identify genetically engineered animals by whole-genome resequencing (WGR) for gene-doping control. Transgenic cell lines, in which the erythropoietin gene (EPO) cDNA form was inserted into the genome of horse fibroblasts, were constructed as a model of genetically modified horse. Genome-wide screening of non-targeted transgenes was performed to find structural variation using DELLY based on split-read and paired-end algorithms and Control-FREEC based on read-depth algorithm. We detected the EPO transgene as an intron deletion in the WGR data by the split-read algorithm of DELLY. In addition, single-nucleotide polymorphisms and insertions/deletions artificially introduced in the EPO transgene were identified by WGR. Therefore, genome-wide screening using WGR can contribute to gene-doping control even if the targets are unknown. This is the first study to detect transgenes as intron deletions for gene-doping detection.
Intranodal dynamic contrast-enhanced CT lymphangiography and dynamic contrast-enhanced MR lymphangiography in microminipig
Objectives To evaluate the feasibility and image quality of intranodal dynamic contrast-enhanced CT lymphangiography (DCCTL) and dynamic contrast-enhanced MR lymphangiography (DCMRL) in microminipigs. Methods Our institution’s committee for animal research and welfare provided approval. Three microminipigs underwent DCCTL and DCMRL after inguinal lymph node injection of 0.1 mL/kg contrast media. Mean CT values on DCCTL and signal intensity (SI) on DCMRL were measured at the venous angle and thoracic duct (TD). The contrast enhancement index (CEI; increase in CT values pre- to post-contrast) and signal intensity ratio (SIR; SI of lymph divided by SI of muscle) were evaluated. The morphologic legibility, visibility, and continuity of lymphatics were qualitatively evaluated using a 4-point scale. Two microminipigs underwent DCCTL and DCMRL after lymphatic disruption and the detectability of lymphatic leakage was evaluated. Results The CEI peaked at 5–10 min in all microminipigs. The SIR peaked at 2–4 min in two microminipigs and at 4–10 min in one microminipig. The peak CEI and SIR values were 235.6 HU and 4.8 for venous angle, 239.4 HU and 2.1 for upper TD, and 387.3 HU and 2.1 for middle TD. The visibility and continuity of upper–middle TD scores were 4.0 and 3.3–3.7 for DCCTL, and 4.0 and 4.0 for DCMRL. In the injured lymphatic model, both DCCTL and DCMRL demonstrated lymphatic leakage. Conclusions DCCTL and DCMRL in a microminipig model enabled excellent visualization of central lymphatic ducts and lymphatic leakage, indicating the research and clinical potential of both modalities. Key Points • Intranodal dynamic contrast-enhanced computed tomography lymphangiography showed a contrast enhancement peak at 5–10 min in all microminipigs. • Intranodal dynamic contrast-enhanced magnetic resonance lymphangiography showed a contrast enhancement peak at 2–4 min in two microminipigs and at 4–10 min in one microminipig. • Both intranodal dynamic contrast-enhanced computed tomography lymphangiography and dynamic contrast-enhanced magnetic resonance lymphangiography demonstrated the central lymphatic ducts and lymphatic leakage.
Fetal Kidney Grafts and Organoids from Microminiature Pigs: Establishing a Protocol for Production and Long-Term Cryopreservation
Fetal organs and organoids are important tools for studying organ development. Recently, porcine organs have garnered attention as potential organs for xenotransplantation because of their high degree of similarity to human organs. However, to meet the prompt demand for porcine fetal organs by patients and researchers, effective methods for producing, retrieving, and cryopreserving pig fetuses are indispensable. Therefore, in this study, to collect fetuses for kidney extraction, we employed cesarean sections to preserve the survival and fertility of the mother pig and a method for storing fetal kidneys by long-term cryopreservation. Subsequently, we evaluated the utility of these two methods. We confirmed that the kidneys of pig fetuses retrieved by cesarean section that were cryopreserved for an extended period could resume renal growth when grafted into mice and were capable of forming renal organoids. These results demonstrate the usefulness of long-term cryopreserved fetal pig organs and strongly suggest the effectiveness of our comprehensive system of pig fetus retrieval and fetal organ preservation, thereby highlighting its potential as an accelerator of xenotransplantation research and clinical innovation.
Functional Reconstruction of Denervated Muscle by Xenotransplantation of Neural Cells from Porcine to Rat
Neural cell transplantation targeting peripheral nerves is a potential treatment regime for denervated muscle atrophy. This study aimed to develop a new therapeutic technique for intractable muscle atrophy by the xenotransplantation of neural stem cells derived from pig fetuses into peripheral nerves. In this study, we created a denervation model using neurotomy in nude rats and transplanted pig-fetus-derived neural stem cells into the cut nerve stump. Three months after transplantation, the survival of neural cells, the number and area of regenerated axons, and the degree of functional recovery by electrical stimulation of peripheral nerves were compared among the gestational ages (E 22, E 27, E 45) of the pigs. Transplanted neural cells were engrafted at all ages. Functional recovery by electric stimulation was observed at age E 22 and E 27. This study shows that the xenotransplantation of fetal porcine neural stem cells can restore denervated muscle function. When combined with medical engineering, this technology can help in developing a new therapy for paralysis.
Radiological Arterial Anatomy in Mature Microminipigs as a Pre-clinical Research Model in Interventional Radiology
PurposeTo define the radiological arterial anatomy in mature microminipigs as a pre-clinical research animal model in interventional radiology.Materials and MethodsFive female microminipigs (weighing 20.9 ± 2.9 kg) were used in this study. Under general anesthesia, computed tomography (CT) angiography was performed using a 16-slice CT scanner. CT was performed 12 s after initiation of an intravenous injection of 40 ml of nonionic contrast media at 3.0 ml/second using a power injector. The transverse CT angiography images were evaluated using a digital imaging and communication in medicine viewer, and the diameters of the following 41 arteries were measured.: ascending aorta, descending aorta, thoracoabdominal aorta, abdominal aorta, pulmonary artery trunk, both pulmonary, brachiocephalic artery, short common bicarotid, both common carotid artery, subclavian, bronchial, internal mammary, celiac, common hepatic, left lateral hepatic, middle hepatic, left hepatic, gastroduodenal, cranial duodenopancreatic, splenic, left gastric, cranial mesenteric, ileocolic , bilateral colic artery, caudal mesenteric, cranial rectal, renal, both external iliac arteries, internal iliac common trunk, and both internal iliac and femoral arteries.ResultsThe microminipigs’ vascular anatomy was the same as domestic pig anatomy and similar to human anatomy. The diameter of the aorta (ascending to abdominal) was 17.1–7.0 mm, iliac and femoral arteries (internal iliac common trunk to femoral artery): 5.5–3.8 mm, pulmonary arteries: 9.3–14.7 mm, and major first aortic branches (e.g., celiac or brachiocephalic artery): 2.2–9.2 mm.ConclusionThis study defined the microminipig arterial anatomy in the trunk.
Physiological variation in Japanese macaques (Macaca fuscata) housed in different outdoor cages evaluated using the metabolic profile test
Captive primates require environmental enrichment to minimize physical and mental stress. However, only a few objective evaluations have been performed to assess environment-induced physiological variations in these animals. In this study, we evaluated the usage of the metabolic profile test (MPT) to assess the influences of the housing environment on the physiology of Japanese macaques. Five male macaques were housed in an old type of cage (old cage group), in which the macaques were exposed to wind (except for a shelter box), and four males were in a new -type of cage (new cage group), which had a sub-room with a waterer that was surrounded by insulating panels. Blood samples were collected bimonthly for a year from the two groups to determine the complete blood count and blood biochemistry. The increase in the body weight of the macaques in both groups was suppressed during the cold season. Furthermore, this suppression was more pronounced in the old cage group, suggesting that the energy expenditure was higher in the old cage group than in the new cage group. Moreover, the red blood cell count and hematocrit values were higher during the cold season in both cages than during the warm season, suggesting that macaques were dehydrated during the cold season. Dehydration tendency was more pronounced in the macaques from the old cage group than in those from the new cage group, suggesting that their water intake decreased during the cold season. Our results suggest that the MPT can be used to evaluate environment-induced physiological variations in Japanese macaques.
Genetic Links between Reproductive Traits and Amino Acid Pairwise Distances of Swine Leukocyte Antigen Alleles among Mating Partners in Microminipigs
Previously, we found that a greater dissimilarity in swine leukocyte antigen (SLA) class I and class II alleles between mating partners resulted in increased farrowing rates in a highly inbred population of Microminipigs (MMPs). In this follow-up study, we have analyzed the effects of dissimilarity in SLA alleles between mating partners for seven different reproductive traits, including litter size and the number of stillborn and live or dead weaned piglets. We determined the relationships among reproductive traits within each mating event and the amino acid distances of SLA alleles as markers of diversity between mating partners. Our results indicate that mating partners with greater amino acid pairwise genetic distances in the SLA-1 class I gene or DQB1 class II gene alleles were associated with significantly larger litter sizes and higher numbers of live piglets at birth and weaning. Also, partners with greater pairwise distances in the SLA-2 class I gene alleles exhibited fewer pre-weaning deaths. These findings suggest that the dissimilarity in SLA class I and class II alleles between mating partners may affect not only farrowing rates but also other key reproductive traits such as litter size and improved piglet survival rates. Consequently, SLA alleles could serve as valuable genetic markers for selecting mating partners in breeding programs and for conducting epistatic studies on various reproductive traits in MMPs.
Genetic diversity and recombination of enterovirus G strains in Japanese pigs: High prevalence of strains carrying a papain-like cysteine protease sequence in the enterovirus G population
To study the genetic diversity of enterovirus G (EV-G) among Japanese pigs, metagenomics sequencing was performed on fecal samples from pigs with or without diarrhea, collected between 2014 and 2016. Fifty-nine EV-G sequences, which were >5,000 nucleotides long, were obtained. By complete VP1 sequence analysis, Japanese EV-G isolates were classified into G1 (17 strains), G2 (four strains), G3 (22 strains), G4 (two strains), G6 (two strains), G9 (six strains), G10 (five strains), and a new genotype (one strain). Remarkably, 16 G1 and one G2 strain identified in diarrheic (23.5%; four strains) or normal (76.5%; 13 strains) fecal samples possessed a papain-like cysteine protease (PL-CP) sequence, which was recently found in the USA and Belgium in the EV-G genome, at the 2C-3A junction site. This paper presents the first report of the high prevalence of viruses carrying PL-CP in the EV-G population. Furthermore, possible inter- and intragenotype recombination events were found among EV-G strains, including G1-PL-CP strains. Our findings may advance the understanding of the molecular epidemiology and genetic evolution of EV-Gs.
Ex vivo lung-organoid model for aberrant basaloid cell induction and activation
Pulmonary fibrosis (PF) is a severe lung disease characterized by the destruction of lung architecture resulting from chronic epithelial injury. The PF microenvironment induces PF-specific epithelial cells, such as aberrant basaloid cells (ABCs). However, limited experimental models capable of inducing and activating PF-specific epithelial cells hinder the understanding of their roles. To address the lack of experimental models, in this study, we developed an ex vivo murine lung-organoid model designed to induce and activate ABCs. The organoids were subjected to bleomycin (BLM) stimulation. Dose-dependent reductions in number and size, structural disorganization, and transcriptomic changes were assessed following stimulation. Single-cell RNA-sequencing (scRNA-seq) analysis was performed to identify ABC subsets. Cell-cell interaction analysis was also conducted. Following BLM stimulation, the organoids displayed dose-dependent reductions in number and size, along with structural disorganization and transcriptomic changes that were similar to those observed in the in vivo murine fibrosis model. scRNA-seq analysis identified two ABC subsets: Krt5 Tp63 Krt17 ABCs_1, found in patients with idiopathic pulmonary fibrosis (IPF), and Krt5 Tp63 Krt17 ABCs_2, which have been observed in cultured tissues from patients with IPF but not in traditional murine models. BLM stimulation led to the induction of transforming growth factor beta (TGF-β2) expression in ABCs. Cell-cell interaction analysis suggested that BLM-damaged type 2 alveolar epithelial cells (AT2s) enhanced their direct and indirect interactions with ABCs_2 via ephrin-A signaling. In line with this observation, stimulation experiments of BLM-damaged organoids revealed that Ephrin A4 induced ABC cell differentiation-related gene expression changes, whereas Ephrin A3 enhanced epithelial proliferation-related gene expression changes and suppressed fibroblast activation-related gene expression changes. The developed organoid model serves as a novel platform for studying the roles and responses of PF-specific ABCs. This model may contribute to advancing the understanding of PF pathogenesis and facilitate the development of ABC-targeted therapies.
Droplet Digital PCR Detection of the Erythropoietin Transgene from Horse Plasma and Urine for Gene-Doping Control
Indiscriminate genetic manipulation to improve athletic ability is a major threat to human sports and the horseracing industry, in which methods involving gene-doping, such as transgenesis, should be prohibited to ensure fairness. Therefore, development of methods to detect indiscriminate genetic manipulation are urgently needed. Here, we developed a highly sensitive method to detect horse erythropoietin (EPO) transgenes using droplet digital PCR (ddPCR). We designed two TaqMan probe/primer sets, and the EPO transgene was cloned into a plasmid for use as a model. We extracted the spiked EPO transgene from horse plasma and urine via magnetic beads, followed by ddPCR amplification for absolute quantification and transgene detection. The results indicated high recovery rates (at least ~60% and ~40% in plasma and urine, respectively), suggesting successful detection of the spiked transgene at concentrations of >130 and 200 copies/mL of plasma and urine, respectively. Additionally, successful detection was achieved following intramuscular injection of 20 mg of the EPO transgene. This represents the first study demonstrating a method for detecting the EPO transgene in horse plasma and urine, with our results demonstrating its efficacy for promoting the control of gene-doping in the horseracing industry.