Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
27 result(s) for "Takehara, Tomohiro"
Sort by:
Evaluation of therapeutic PD-1 antibodies by an advanced single-molecule imaging system detecting human PD-1 microclusters
With recent advances in immune checkpoint inhibitors (ICIs), immunotherapy has become the standard treatment for various malignant tumors. Their indications and dosages have been determined empirically, taking individually conducted clinical trials into consideration, but without a standard method to evaluate them. Here we establish an advanced imaging system to visualize human PD-1 microclusters, in which a minimal T cell receptor (TCR) signaling unit co-localizes with the inhibitory co-receptor PD-1 in vitro. In these microclusters PD-1 dephosphorylates both the TCR/CD3 complex and its downstream signaling molecules via the recruitment of a phosphatase, SHP2, upon stimulation with the ligand hPD-L1. In this system, blocking antibodies for hPD-1-hPD-L1 binding inhibits hPD-1 microcluster formation, and each therapeutic antibody (pembrolizumab, nivolumab, durvalumab and atezolizumab) is characterized by a proprietary optimal concentration and combinatorial efficiency enhancement. We propose that our imaging system could digitally evaluate PD-1-mediated T cell suppression to evaluate their clinical usefulness and to develop the most suitable combinations among ICIs or between ICIs and conventional cancer treatments. Immune checkpoint inhibitors are now routinely used in cancer therapy, however, the dosage and integration into conventional cancer therapy is determined via empirical experience rather than mechanistic rationale. Here authors establish an advanced single-molecule imaging method, by with which they are directly monitoring and evaluating the effect of immune checkpoint inhibitors on T cell signaling.
PD-L2 suppresses T cell signaling via coinhibitory microcluster formation and SHP2 phosphatase recruitment
The coinhibitory receptor, PD-1, is of major importance for the suppression of T cell activation in various types of immune responses. A high-resolution imaging study showed that PD-1 forms a coinhibitory signalosome, “PD-1 microcluster”, with the phosphatase, SHP2, to dephosphorylate the TCR/CD3 complex and its downstream signaling molecules. Such a consecutive reaction entirely depended on PD-1–PD-L1/2 binding. PD-L2 is expressed on professional antigen-presenting cells and also on some tumor cells, which possibly explains the discrepant efficacy of immune checkpoint therapy for PD-L1-negative tumors. Here, we performed precise imaging analysis of PD-L2 forming PD-1–PD-L2 clusters associating with SHP2. PD-L2 could compete with PD-L1 for binding to PD-1, occupying the same space at TCR microclusters. The PD-1 microcluster formation was inhibited by certain mAbs with functional consequences. Thus, PD-1 microcluster formation provides a visible index for the effectiveness of anti-PD-1- or anti-PD-L1/2-mediated T cell suppression. PD-L2 may exert immune suppressive responses cooperatively with PD-L1 on the microcluster scale.Takehara et al performed imaging analysis of microcluster formation between the PD-L1 and PD-L2, which are known to play a role in T cell activation in response to tumour cell signaling. Their analysis showed that the cluster formation inhibited T cell receptor signaling and could serve as a visual index for PD-L1/2-targeted cancer therapies.
Immune thrombocytopenia secondary to primary cytomegalovirus infection after renal transplantation treated with a thrombopoietin receptor agonist: a case report
Background Immune thrombocytopenia (ITP) is an acquired disorder characterised by a low platelet count due to immune-mediated destruction and impaired platelet production. Here we report a rare case of primary cytomegalovirus (CMV) infection followed by thrombocytopenia after renal transplantation (RT). Case presentation A 24-year-old male patient with end-stage kidney disease secondary to hereditary focal segmental glomerulosclerosis was treated with peritoneal dialysis and received ABO-compatible living-related RT from his aunt. Nine months after the RT, the patient was diagnosed with primary CMV infection. After initiating treatment for primary CMV infection, the patient developed thrombocytopenia. After excluding other diseases or drugs that may cause thrombocytopenia, the patient was finally diagnosed with ITP, administered prednisolone (PSL), and started on Helicobacter pylori eradication therapy. Tapering the PSL dose was difficult, but thrombopoietin receptor agonists (TPO-RAs) were effective. Conclusions In this case, the patient was diagnosed with ITP, and other causes of thrombocytopenia after RT were successfully ruled out. This case report demonstrates that RT recipients can develop ITP after CMV infection, and, in such cases, TPO-RAs may be an attractive option as a second-line therapy.
First case report of thyroid abscess caused by Helicobacter cinaedi presenting with thyroid storm
Background Helicobacter cinaedi is a microaerobic Gram-negative spiral-shaped bacterium that causes enteritis, cellulitis, and bacteremia in both immunocompromised and immunocompetent patients. While there have been increasing numbers of reported H. cinaedi infections recently, there has been no thyroid abscess case caused by H. cinaedi presenting with thyroid storm. Case presentation A 50-year-old Japanese man presented with a 9-day history of high fever associated with palpitations, dry cough, and chronic diarrhea. The patient had a history of Basedow’s disease that had been treated with thiamazole in the past. During the current episode, the patient was diagnosed with thyroid storm and treated accordingly. The blood culture taken on admission was positive for H. cinaedi . This finding was confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOFMS). A systemic computed tomography (CT) scan revealed a thyroid abscess as the site of infection and cause of the bacteremia. The 16S rRNA gene sequencing identified the pathogen of thyroid abscess as H. cinaedi . Clinical symptoms and laboratory data normalized on admission day 7 after treatment with both effective antibiotics and antithyroid drugs. Conclusions The case study described a patient with a history of Basedow’s disease that presented with a thyroid abscess caused by H. cinaedi with symptoms similar to those of thyroid storm. While this bacterium has been implicated in other infections, we believe this is the first time the bacteria has been documented to have caused a thyroid abscess.
Dialysis Duration, Time Interaction, and Visceral Fat Accumulation: A 6-Year Posttransplantation Study
Background Kidney transplantation (KT) leads to body composition change, particularly increasing the fat mass. However, limited researches have focused on the long-term follow-up of these changes and factors influencing body composition after KT. Methods This study evaluated body composition in 31 adult KT recipients, measuring body mass index (BMI), the psoas muscle mass index (PMI) representing muscle mass, visceral and subcutaneous adipose tissue (VAT and SAT) representing fat mass, and skeletal muscle radiodensity (SMR) representing muscle quality before KT and at 2, 4, and 6 years posttransplantation using computed tomography. Linear mixed models (LMM) analyzed temporal changes and contributing factors, while growth curve models assessed influence of these factors on body composition changes posttransplantation. Results Following KT, BMI, and PMI remained stable, while SAT increased significantly, revealing a 1.30-fold increase from baseline 2 years after transplantation. Similarly, a substantial increase in VAT was observed, with a 1.47-fold increase from baseline 2 years after transplantation with a further 1.75-fold increase 6 years after transplantation. In contrast, SMR decreased with a 0.86-fold decrease from baseline after 2 years. VAT increase was significantly influenced by the interaction between posttransplantation and dialysis duration. Growth curve models confirmed this interaction effect persistently influenced VAT increase posttransplantation. Conclusions The study revealed that KT promoted significant alterations in body composition characterized by increase in the VAT and SAT and a decline in SMR. Notably, dialysis duration and its interaction with posttransplantation duration emerged as significant factors influencing VAT increase.
A case of community‐acquired pneumonia caused by Bacillus subtilis subsp. natto in an immunocompetent patient
A 70‐year‐old immunocompetent male with a history of insomnia presented with pneumonia and bacteremia caused by Bacillus subtilis. The patient took benzodiazepines and regularly consumed alcohol and natto (fermented soybeans). Initial antibiotic treatment was not effective, and bronchoalveolar lavage was performed. Bronchoalveolar lavage fluid (BALF) analysis revealed an increased lymphocytes fraction, and B. subtilis was detected in the BALF. Whole‐genome sequencing confirmed the congruence of the genetic sequences between the strain in the blood culture of the patient, BALF, and strain isolated from the consumed natto, confirming B. subtilis subsp. natto as the causative pathogen of pneumonia and bacteremia. Vancomycin followed by levofloxacin and systemic corticosteroid were used to treat the condition. This case highlights community‐acquired pneumonia and bacteremia caused by B. subtilis subsp. natto, particularly in individuals who consume natto. We report a rare case of pneumonia and bacteremia caused by Bacillus subtilis subsp. natto in an immunocompetent patient. B. subtilis subsp. natto is a gram‐positive spore‐forming bacteria and a subspecies of B. subtilis. Natto is a Japanese traditional food made by fermenting soybeans with B. subtilis subsp. natto which can produce nattokinase.
A case of disseminated intravascular coagulation following tumour lysis syndrome due to small cell carcinoma of the lung
A 64‐year‐old man was diagnosed with small cell lung cancer (SCLC) with multiple bone and liver metastases and bone marrow metastases. Spontaneous tumour lysis syndrome (TLS) was observed before starting chemotherapy with carboplatin, etoposide, and atezolizumab. The tumour further collapsed, and the patient developed disseminated intravascular coagulation (DIC) on day 4 of chemotherapy. The patient was successfully treated with intravenous hydration and rasburicase for TLS and subcutaneous unfractionated heparin for DIC. A large amount of tissue factor may be released in TLS, which could induce DIC. However, to the best of our knowledge, this is the first report of DIC following TLS in a case of SCLC. DIC following TLS in SCLC is a rare but life‐threatening oncologic complication. Therefore, clinicians should be aware of this possibility when treating patients with advanced SCLC. Disseminated intravascular coagulation (DIC) following tumour lysis syndrome (TLS) is a rare but serious life‐threatening complication that clinicians need to be aware of when treating patients with advanced small cell lung cancer (SCLC). To the best of our knowledge, this is the first report of DIC following TLS in a case of SCLC.
A case of anti‐melanoma differentiation‐associated gene 5 antibody‐positive dermatomyositis‐associated rapidly progressive interstitial lung diseases developed after administration of COVID‐19 vaccine and subsequent pneumococcal vaccine
Five cases of anti‐melanoma differentiation‐associated gene 5 antibody‐positive dermatomyositis‐associated rapidly progressive interstitial lung diseases (anti‐MDA5‐positive DM‐RPILD) following COVID‐19 vaccination have been reported previously. We present the first case of the disease that developed following the sequence of COVID‐19 infection, COVID‐19 vaccination, and 23‐valent pneumococcal polysaccharide vaccine (PPSV23) administration. A 75‐year‐old‐Japanese man received the third dose of Pfizer COVID‐19 vaccine 4 weeks after he had a mild COVID‐19 infection. Eleven weeks after vaccination, he received PPSV23 for the first time. He developed fever, malaise, and anorexia the day after the PPSV23, rash a week later, and shortness of breath 2 weeks later. He was then admitted to a local hospital and treated with antibiotics, but his condition worsened. He was transferred to our hospital 4 weeks after the PPSV23 and was diagnosed with anti‐MDA5‐positive DM‐RPILD. Despite intensive treatment, the patient died on the 10th hospital day. Five cases of anti‐melanoma differentiation‐associated gene 5 antibody‐positive dermatomyositis‐associated rapidly progressive interstitial lung diseases (anti‐MDA5‐positive DM‐RPILD) following COVID‐19 vaccination have been reported previously. We present the first case of the disease that developed following the sequence of COVID‐19 infection, COVID‐19 vaccination, and 23‐valent pneumococcal polysaccharide vaccine (PPSV23) administration.
Adoptive transfer of zoledronate-expanded autologous Vγ9Vδ2 T-cells in patients with treatment-refractory non-small-cell lung cancer: a multicenter, open-label, single-arm, phase 2 study
BackgroundNot all non-small cell lung cancer (NSCLC) patients possess drug-targetable driver mutations, and response rates to immune checkpoint blockade therapies also remain unsatisfactory. Therefore, more effective treatments are still needed. Here, we report the results of a phase 2 clinical trial of adoptive cell therapy using zoledronate-expanded autologous Vγ9Vδ2 T-cells for treatment-refractory NSCLC.MethodsNSCLC patients who had undergone at least two regimens of standard chemotherapy for unresectable disease or had had at least one treatment including chemotherapy or radiation for recurrent disease after surgery were enrolled in this open-label, single-arm, multicenter, phase 2 study. After preliminary testing of Vγ9Vδ2 T-cell proliferation, autologous peripheral blood mononuclear cells were cultured with zoledronate and IL-2 to expand the Vγ9Vδ2 T-cells. Cultured cells (>1×109) were intravenously administered every 2 weeks for six injections. The primary endpoint of this study was progression-free survival (PFS), and secondary endpoints included overall survival (OS), best objective response rate (ORR), disease control rate (DCR), safety and immunomonitoring. Clinical efficacy was defined as median PFS significantly >4 months.ResultsTwenty-five patients (20 adenocarcinoma, 4 squamous cell carcinoma and 1 large cell carcinoma) were enrolled. Autologous Vγ9Vδ2 T-cell therapy was administered to all 25 patients, of which 16 completed the foreseen course of 6 injections of cultured cells. Median PFS was 95.0 days (95% CI 73.0 to 132.0 days); median OS was 418.0 days (179.0–479.0 days), and best overall responses were 1 partial response, 16 stable disease (SD) and 8 progressive disease. ORR and DCR were 4.0% (0.1%–20.4%) and 68.0% (46.5%–85.1%), respectively. Severe adverse events developed in nine patients, mostly associated with disease progression. In one patient, pneumonitis and inflammatory responses resulted from Vγ9Vδ2 T-cell infusions, together with the disappearance of a massive tumor.ConclusionsAlthough autologous Vγ9Vδ2 T-cell therapy was well tolerated and may have an acceptable DCR, this trial did not meet its primary efficacy endpoint.Trial registration numberUMIN000006128
Endogenous Purification of NR4A2 (Nurr1) Identified Poly(ADP-Ribose) Polymerase 1 as a Prime Coregulator in Human Adrenocortical H295R Cells
Aldosterone is synthesized in zona glomerulosa of adrenal cortex in response to angiotensin II. This stimulation transcriptionally induces expression of a series of steroidogenic genes such as HSD3B and CYP11B2 via NR4A (nuclear receptor subfamily 4 group A) nuclear receptors and ATF (activating transcription factor) family transcription factors. Nurr1 belongs to the NR4A family and is regarded as an orphan nuclear receptor. The physiological significance of Nurr1 in aldosterone production in adrenal cortex has been well studied. However, coregulators supporting the Nurr1 function still remain elusive. In this study, we performed RIME (rapid immunoprecipitation mass spectrometry of endogenous proteins), a recently developed endogenous coregulator purification method, in human adrenocortical H295R cells and identified PARP1 as one of the top Nurr1-interacting proteins. Nurr1-PARP1 interaction was verified by co-immunoprecipitation. In addition, both siRNA knockdown of PARP1 and treatment of AG14361, a specific PARP1 inhibitor suppressed the angiotensin II-mediated target gene induction in H295R cells. Furthermore, PARP1 inhibitor also suppressed the aldosterone secretion in response to the angiotensin II. Together, these results suggest PARP1 is a prime coregulator for Nurr1.