Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,521
result(s) for
"Takeuchi, M"
Sort by:
cKit⁺ cardiac progenitors of neural crest origin
by
Seidler, Barbara
,
Hatzistergos, Konstantinos E.
,
Mai, Jia Jia
in
Animals
,
Biological Sciences
,
Bone Morphogenetic Proteins - antagonists & inhibitors
2015
The degree to whichcKit-expressing progenitors generate cardiomyocytes in the heart is controversial. Genetic fate-mapping studies suggest minimal contribution; however, whether or not minimal contribution reflects minimal cardiomyogenic capacity is unclear because the embryonic origin and role in cardiogenesis of these progenitors remain elusive. Using high-resolution genetic fate-mapping approaches withcKitCreERT2/+
andWnt1::Flpemouse lines, we show thatcKitdelineates cardiac neural crest progenitors (CNC
kit
). CNC
kit
possess full cardiomyogenic capacity and contribute to all CNC derivatives, including cardiac conduction system cells. Furthermore, by modeling cardiogenesis incKitCreERT2
-induced pluripotent stem cells, we show that, paradoxically, the cardiogenic fate of CNC
kit
is regulated by bone morphogenetic protein antagonism, a signaling pathway activated transiently during establishment of the cardiac crescent, and extinguished from the heart before CNC invasion. Together, these findings elucidate the origin of cKit⁺ cardiac progenitors and suggest that a nonpermissive cardiac milieu, rather than minimal cardiomyogenic capacity, controls the degree of CNC
kit
contribution to myocardium.
Journal Article
Endovascular Therapy for Acute Stroke with a Large Ischemic Region
by
Yazawa, Yukako
,
Matsumoto, Yasushi
,
Beppu, Mikiya
in
Body weight
,
Brain Ischemia - diagnostic imaging
,
Brain Ischemia - drug therapy
2022
Endovascular therapy for stroke is generally avoided if the cerebral infarction is large. In a trial conducted in Japan, the percentage of patients who had a good functional outcome at 90 days was higher with endovascular therapy than with medical care, but there were more cerebral hemorrhages with endovascular therapy.
Journal Article
Hydroxychloroquine Mitigates Dilated Cardiomyopathy Phenotype in Transgenic D94A Mice
by
Kanashiro-Takeuchi, Rosemeire M.
,
Liang, Jingsheng
,
Sitbon, Yoel H.
in
Animals
,
Cardiac function
,
Cardiomyopathy
2022
In this study, we aimed to investigate whether short-term and low-dose treatment with hydroxychloroquine (HCQ), an antimalarial drug, can modulate heart function in a preclinical model of dilated cardiomyopathy (DCM) expressing the D94A mutation in cardiac myosin regulatory light chain (RLC) compared with healthy non-transgenic (NTg) littermates. Increased interest in HCQ came with the COVID-19 pandemic, but the risk of cardiotoxic side effects of HCQ raised concerns, especially in patients with an underlying heart condition, e.g., cardiomyopathy. Effects of HCQ treatment vs. placebo (H2O), administered in Tg-D94A vs. NTg mice over one month, were studied by echocardiography and muscle contractile mechanics. Global longitudinal strain analysis showed the HCQ-mediated improvement in heart performance in DCM mice. At the molecular level, HCQ promoted the switch from myosin’s super-relaxed (SRX) to disordered relaxed (DRX) state in DCM-D94A hearts. This result indicated more myosin cross-bridges exiting a hypocontractile SRX-OFF state and assuming the DRX-ON state, thus potentially enhancing myosin motor function in DCM mice. This bottom-up investigation of the pharmacological use of HCQ at the level of myosin molecules, muscle fibers, and whole hearts provides novel insights into mechanisms by which HCQ therapy mitigates some abnormal phenotypes in DCM-D94A mice and causes no harm in healthy NTg hearts.
Journal Article
Cardioprotective effects of growth hormone-releasing hormone agonist after myocardial infarction
by
Kanashiro-Takeuchi, Rosemeire M
,
Dulce, Raul
,
Klukovits, Anna
in
agonists
,
Animals
,
Apoptosis
2010
Whether the growth hormone (GH)/insulin-like growth factor 1(IGF-1) axis exerts cardioprotective effects remains controversial; and the underlying mechanism(s) for such actions are unclear. Here we tested the hypothesis that growth hormone-releasing hormone (GHRH) directly activates cellular reparative mechanisms within the injured heart, in a GH/IGF-1 independent fashion. After experimental myocardial infarction (MI), rats were randomly assigned to receive, during a 4-week period, either placebo (n = 14), rat recombinant GH (n = 8) or JI-38 (n = 8; 50 μg/kg per day), a potent GHRH agonist. JI-38 did not elevate serum levels of GH or IGF-1, but it markedly attenuated the degree of cardiac functional decline and remodeling after injury. In contrast, GH administration markedly elevated body weight, heart weight, and circulating GH and IGF-1, but it did not offset the decline in cardiac structure and function. Whereas both JI-38 and GH augmented levels of cardiac precursor cell proliferation, only JI-38 increased antiapoptotic gene expression. The receptor for GHRH was detectable on myocytes, supporting direct activation of cardiac signal transduction. Collectively, these findings demonstrate that within the heart, GHRH agonists can activate cardiac repair after MI, suggesting the existence of a potential signaling pathway based on GHRH in the heart. The phenotypic profile of the response to a potent GHRH agonist has therapeutic implications.
Journal Article
Growth hormone-releasing hormone agonists ameliorate chronic kidney disease-induced heart failure with preserved ejection fraction
by
Salerno, Alessandro
,
Florea, Victoria
,
Takeuchi, Lauro M.
in
Biological Sciences
,
Medical Sciences
2021
Therapies for heart failure with preserved ejection fraction (HFpEF) are lacking. Growth hormone-releasing hormone agonists (GHRH-As) have salutary effects in ischemic and nonischemic heart failure animal models. Accordingly, we hypothesized that GHRH-A treatment ameliorates chronic kidney disease (CKD)-induced HFpEF in a large-animal model. Female Yorkshire pigs (n = 16) underwent 5/6 nephrectomy via renal artery embolization and 12 wk later were randomized to receive daily subcutaneous injections of GHRH-A (MR-409; n = 8; 30 μg/kg) or placebo (n = 8) for 4 to 6 wk. Renal and cardiac structure and function were serially assessed postembolization. Animals with 5/6 nephrectomy exhibited CKD (elevated blood urea nitrogen [BUN] and creatinine) and faithfully recapitulated the hemodynamic features of HFpEF. HFpEF was demonstrated at 12 wk by maintenance of ejection fraction associated with increased left ventricular mass, relative wall thickness, end-diastolic pressure (EDP), end-diastolic pressure/end-diastolic volume (EDP/EDV) ratio, and tau, the time constant of isovolumic diastolic relaxation. After 4 to 6 wk of treatment, the GHRH-A group exhibited normalization of EDP (P = 0.03), reduced EDP/EDV ratio (P = 0.018), and a reduction in myocardial pro-brain natriuretic peptide protein abundance. GHRH-A increased cardiomyocyte [Ca2+] transient amplitude (P = 0.009). Improvement of the diastolic function was also evidenced by increased abundance of titin isoforms and their ratio (P = 0.0022). GHRH-A exerted a beneficial effect on diastolic function in a CKD large-animal model as demonstrated by improving hemodynamic, structural, andmolecular characteristics of HFpEF. These findings have important therapeutic implications for the HFpEF syndrome.
Journal Article
Therapeutic potential of AAV9-S15D-RLC gene delivery in humanized MYL2 mouse model of HCM
by
Kanashiro-Takeuchi, Rosemeire M
,
Yadav, Sunil
,
Liang, Jingsheng
in
Aspartic acid
,
Cardiomyopathy
,
Echocardiography
2019
Familial hypertrophic cardiomyopathy (HCM) is an autosomal dominant disorder characterized by ventricular hypertrophy, myofibrillar disarray, and fibrosis, and is primarily caused by mutations in sarcomeric genes. With no definitive cure for HCM, there is an urgent need for the development of novel preventive and reparative therapies. This study is focused on aspartic acid-to-valine (D166V) mutation in the myosin regulatory light chain, RLC (MYL2 gene), associated with a malignant form of HCM. Since myosin RLC phosphorylation is critical for normal cardiac function, we aimed to exploit this post-translational modification via phosphomimetic-RLC gene therapy. We hypothesized that mimicking/modulating cardiac RLC phosphorylation in non-phosphorylatable D166V myocardium would improve heart function of HCM-D166V mice. Adeno-associated virus, serotype-9 (AAV9) was used to deliver phosphomimetic human RLC variant with serine-to-aspartic acid substitution at Ser15-RLC phosphorylation site (S15D-RLC) into the hearts of humanized HCM-D166V mice. Improvement of heart function was monitored by echocardiography, invasive hemodynamics (PV-loops) and muscle contractile mechanics. A significant increase in cardiac output and stroke work and a decrease in relaxation constant, Tau, shown to be prolonged in HCM mice, were observed in AAV- vs. PBS-injected HCM mice. Strain analysis showed enhanced myocardial longitudinal shortening in AAV-treated vs. control mice. In addition, increased maximal contractile force was observed in skinned papillary muscles from AAV-injected HCM hearts. Our data suggest that myosin RLC phosphorylation may have important translational implications for the treatment of RLC mutations-induced HCM and possibly play a role in other disease settings accompanied by depressed Ser15-RLC phosphorylation.Key messagesHCM-D166V mice show decreased RLC phosphorylation and decompensated function.AAV9-S15D-RLC gene therapy in HCM-D166V mice, but not in WT-RLC, results in improved heart performance.Global longitudinal strain analysis shows enhanced contractility in AAV vs controls.Increased systolic and diastolic function is paralleled by higher contractile force.Phosphomimic S15D-RLC has a therapeutic potential for HCM.
Journal Article
Activation of growth hormone releasing hormone (GHRH) receptor stimulates cardiac reverse remodeling after myocardial infarction (MI)
by
Dulce, Raul
,
Florea, Victoria
,
Takeuchi, Lauro M.
in
Analysis of Variance
,
Animals
,
antagonists
2012
Both cardiac myocytes and cardiac stem cells (CSCs) express the receptor of growth hormone releasing hormone (GHRH), activation of which improves injury responses after myocardial infarction (MI). Here we show that a GHRH-agonist (GHRH-A; JI-38) reverses ventricular remodeling and enhances functional recovery in the setting of chronic MI. This response is mediated entirely by activation of GHRH receptor (GHRHR), as demonstrated by the use of a highly selective GHRH antagonist (MIA-602). One month after MI, animals were randomly assigned to receive: placebo, GHRH-A (JI-38), rat recombinant GH, MIA-602, or a combination of GHRH-A and MIA-602, for a 4-wk period. We assessed cardiac performance and hemodynamics by using echocardiography and micromanometry derived pressure-volume loops. Morphometric measurements were carried out to determine MI size and capillary density, and the expression of GHRHR was assessed by immunofluorescence and quantitative RT-PCR. GHRH-A markedly improved cardiac function as shown by echocardiographic and hemodynamic parameters. MI size was substantially reduced, whereas myocyte and nonmyocyte mitosis was markedly increased by GHRH-A. These effects occurred without increases in circulating levels of growth hormone and insulin-like growth factor I and were, at least partially, nullified by GHRH antagonism, confirming a receptor-mediated mechanism. GHRH-A stimulated CSCs proliferation ex vivo, in a manner offset by MIA-602. Collectively, our findings reveal the importance of the GHRH signaling pathway within the heart. Therapy with GHRH-A although initiated 1 mo after MI substantially improved cardiac performance and reduced infarct size, suggesting a regenerative process. Therefore, activation of GHRHR provides a unique therapeutic approach to reverse remodeling after MI.
Journal Article
Automatic surgical phase recognition in laparoscopic inguinal hernia repair with artificial intelligence
2022
BackgroundBecause of the complexity of the intra-abdominal anatomy in the posterior approach, a longer learning curve has been observed in laparoscopic transabdominal preperitoneal (TAPP) inguinal hernia repair. Consequently, automatic tools using artificial intelligence (AI) to monitor TAPP procedures and assess learning curves are required. The primary objective of this study was to establish a deep learning-based automated surgical phase recognition system for TAPP. A secondary objective was to investigate the relationship between surgical skills and phase duration.MethodsThis study enrolled 119 patients who underwent the TAPP procedure. The surgical videos were annotated (delineated in time) and split into seven surgical phases (preparation, peritoneal flap incision, peritoneal flap dissection, hernia dissection, mesh deployment, mesh fixation, peritoneal flap closure, and additional closure). An AI model was trained to automatically recognize surgical phases from videos. The relationship between phase duration and surgical skills were also evaluated.ResultsA fourfold cross-validation was used to assess the performance of the AI model. The accuracy was 88.81 and 85.82%, in unilateral and bilateral cases, respectively. In unilateral hernia cases, the duration of peritoneal incision (p = 0.003) and hernia dissection (p = 0.014) detected via AI were significantly shorter for experts than for trainees.ConclusionAn automated surgical phase recognition system was established for TAPP using deep learning with a high accuracy. Our AI-based system can be useful for the automatic monitoring of surgery progress, improving OR efficiency, evaluating surgical skills and video-based surgical education. Specific phase durations detected via the AI model were significantly associated with the surgeons’ learning curve.
Journal Article
Constitutive phosphorylation of cardiac myosin regulatory light chain prevents development of hypertrophic cardiomyopathy in mice
by
Rosemeire M. Kanashiro-Takeuchi
,
Wenrui Huang
,
Jingsheng Liang
in
Animals
,
Biological Sciences
,
Calcium - chemistry
2015
Myosin light chain kinase (MLCK)-dependent phosphorylation of the regulatory light chain (RLC) of cardiac myosin is known to play a beneficial role in heart disease, but the idea of a phosphorylation-mediated reversal of a hypertrophic cardiomyopathy (HCM) phenotype is novel. Our previous studies on transgenic (Tg) HCM-RLC mice revealed that the D166V (Aspartate166 âValine) mutation-induced changes in heart morphology and function coincided with largely reduced RLC phosphorylation in situ. We hypothesized that the introduction of a constitutively phosphorylated Serine15 (S15D) into the hearts of D166V mice would prevent the development of a deleterious HCM phenotype. In support of this notion, MLCK-induced phosphorylation of D166V-mutated hearts was found to rescue some of their abnormal contractile properties. Tg-S15D-D166V mice were generated with the human cardiac RLC-S15D-D166V construct substituted for mouse cardiac RLC and were subjected to functional, structural, and morphological assessments. The results were compared with Tg-WT and Tg-D166V mice expressing the human ventricular RLC-WT or its D166V mutant, respectively. Echocardiography and invasive hemodynamic studies demonstrated significant improvements of intact heart function in S15D-D166V mice compared with D166V, with the systolic and diastolic indices reaching those monitored in WT mice. A largely reduced maximal tension and abnormally high myofilament Ca ²⺠sensitivity observed in D166V-mutated hearts were reversed in S15D-D166V mice. Low-angle X-ray diffraction study revealed that altered myofilament structures present in HCM-D166V mice were mitigated in S15D-D166V rescue mice. Our collective results suggest that expression of pseudophosphorylated RLC in the hearts of HCM mice is sufficient to prevent the development of the pathological HCM phenotype.
Genetic hypertrophic cardiomyopathy (HCM) is a debilitating disease affecting 1 in 500 of the general population, and there is no effective therapy to reverse or prevent its development and/or progression to heart failure. To inhibit a detrimental HCM phenotype induced by the D166V mutation of cardiac myosin regulatory light chain (RLC) in mice that also show reduced phosphorylation of endogenous cardiac RLC, constitutively phosphorylated D166V mutant mice were produced and tested. Our in-depth investigation of heart morphology, structure, and function of S15D-D166V mice provided evidence for the pseudophosphorylation-elicited prevention of the progressive HCM-D166V phenotype. This study is significant for the field of HCM, and our findings may constitute a novel therapeutic modality to battle hypertrophic cardiomyopathy associated with RLC mutations.
Journal Article
POGLUT1 biallelic mutations cause myopathy with reduced satellite cells, α-dystroglycan hypoglycosylation and a distinctive radiological pattern
by
Bönnemann, C.
,
Takeuchi, M.
,
Johnson, K.
in
Animals
,
Animals, Genetically Modified
,
Degeneration
2020
Protein
O
-glucosyltransferase 1 (POGLUT1) activity is critical for the Notch signaling pathway, being one of the main enzymes responsible for the glycosylation of the extracellular domain of Notch receptors. A biallelic mutation in the
POGLUT1
gene has been reported in one family as the cause of an adult-onset limb-girdle muscular dystrophy (LGMD R21; OMIM# 617232). As the result of a collaborative international effort, we have identified the first cohort of 15 patients with LGMD R21, from nine unrelated families coming from different countries, providing a reliable phenotype–genotype and mechanistic insight. Patients carrying novel mutations in
POGLUT1
all displayed a clinical picture of limb-girdle muscle weakness. However, the age at onset was broadened from adult to congenital and infantile onset. Moreover, we now report that the unique muscle imaging pattern of “inside-to-outside” fatty degeneration observed in the original cases is indeed a defining feature of
POGLUT1
muscular dystrophy. Experiments on muscle biopsies from patients revealed a remarkable and consistent decrease in the level of the NOTCH1 intracellular domain, reduction of the pool of satellite cells (SC), and evidence of α-dystroglycan hypoglycosylation. In vitro biochemical and cell-based assays suggested a pathogenic role of the novel
POGLUT1
mutations, leading to reduced enzymatic activity and/or protein stability. The association between the
POGLUT1
variants and the muscular phenotype was established by in vivo experiments analyzing the indirect flight muscle development in transgenic
Drosophila
, showing that the human
POGLUT1
mutations reduced its myogenic activity. In line with the well-known role of the Notch pathway in the homeostasis of SC and muscle regeneration, SC-derived myoblasts from patients’ muscle samples showed decreased proliferation and facilitated differentiation. Together, these observations suggest that alterations in SC biology caused by reduced Notch1 signaling result in muscular dystrophy in LGMD R21 patients, likely with additional contribution from α-dystroglycan hypoglycosylation. This study settles the muscular clinical phenotype linked to
POGLUT1
mutations and establishes the pathogenic mechanism underlying this muscle disorder. The description of a specific imaging pattern of fatty degeneration and muscle pathology with a decrease of α-dystroglycan glycosylation provides excellent tools which will help diagnose and follow up LGMD R21 patients.
Journal Article