Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
9
result(s) for
"Talkhabi, Mahmood"
Sort by:
Identification of potential microRNA diagnostic panels and uncovering regulatory mechanisms in breast cancer pathogenesis
2022
Early diagnosis of breast cancer (BC), as the most common cancer among women, increases the survival rate and effectiveness of treatment. MicroRNAs (miRNAs) control various cell behaviors, and their dysregulation is widely involved in pathophysiological processes such as BC development and progress. In this study, we aimed to identify potential miRNA biomarkers for early diagnosis of BC. We also proposed a consensus-based strategy to analyze the miRNA expression data to gain a deeper insight into the regulatory roles of miRNAs in BC initiation. Two microarray datasets (GSE106817 and GSE113486) were analyzed to explore the differentially expressed miRNAs (DEMs) in serum of BC patients and healthy controls. Utilizing multiple bioinformatics tools, six serum-based miRNA biomarkers (miR-92a-3p, miR-23b-3p, miR-191-5p, miR-141-3p, miR-590-5p and miR-190a-5p) were identified for BC diagnosis. We applied our consensus and integration approach to construct a comprehensive BC-specific miRNA-TF co-regulatory network. Using different combination of these miRNA biomarkers, two novel diagnostic models, consisting of miR-92a-3p, miR-23b-3p, miR-191-5p (model 1) and miR-92a-3p, miR-23b-3p, miR-141-3p, and miR-590-5p (model 2), were obtained from bioinformatics analysis. Validation analysis was carried out for the considered models on two microarray datasets (GSE73002 and GSE41922). The model based on similar network topology features, comprising miR-92a-3p, miR-23b-3p and miR-191-5p was the most promising model in the diagnosis of BC patients from healthy controls with 0.89 sensitivity, 0.96 specificity and area under the curve (AUC) of 0.98. These findings elucidate the regulatory mechanisms underlying BC and represent novel biomarkers for early BC diagnosis.
Journal Article
A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells
by
Blue, Gillian M.
,
Kiani, Sahar
,
Mayorchak, Yaroslav
in
Antigens, Differentiation - metabolism
,
Biopsy
,
Bioreactor
2015
A scalable, robust, and integrated differentiation platform for large‐scale production of human pluripotent stem cell‐cardiomyocyte (hPSC‐CM) in a stirred suspension bioreactor as a single‐unit operation was developed. This platform could become a valuable tool for mass production of functional hPSC‐CMs as a prerequisite for realizing their promising potential for therapeutic and industrial applications including drug discovery and toxicity assays. Recent advances in the generation of cardiomyocytes (CMs) from human pluripotent stem cells (hPSCs), in conjunction with the promising outcomes from preclinical and clinical studies, have raised new hopes for cardiac cell therapy. We report the development of a scalable, robust, and integrated differentiation platform for large‐scale production of hPSC‐CM aggregates in a stirred suspension bioreactor as a single‐unit operation. Precise modulation of the differentiation process by small molecule activation of WNT signaling, followed by inactivation of transforming growth factor‐β and WNT signaling and activation of sonic hedgehog signaling in hPSCs as size‐controlled aggregates led to the generation of approximately 100% beating CM spheroids containing virtually pure (∼90%) CMs in 10 days. Moreover, the developed differentiation strategy was universal, as demonstrated by testing multiple hPSC lines (5 human embryonic stem cell and 4 human inducible PSC lines) without cell sorting or selection. The produced hPSC‐CMs successfully expressed canonical lineage‐specific markers and showed high functionality, as demonstrated by microelectrode array and electrophysiology tests. This robust and universal platform could become a valuable tool for the mass production of functional hPSC‐CMs as a prerequisite for realizing their promising potential for therapeutic and industrial applications, including drug discovery and toxicity assays. Significance Recent advances in the generation of cardiomyocytes (CMs) from human pluripotent stem cells (hPSCs) and the development of novel cell therapy strategies using hPSC‐CMs (e.g., cardiac patches) in conjunction with promising preclinical and clinical studies, have raised new hopes for patients with end‐stage cardiovascular disease, which remains the leading cause of morbidity and mortality globally. In this study, a simplified, scalable, robust, and integrated differentiation platform was developed to generate clinical grade hPSC‐CMs as cell aggregates under chemically defined culture conditions. This approach resulted in approximately 100% beating CM spheroids with virtually pure (∼90%) functional cardiomyocytes in 10 days from multiple hPSC lines. This universal and robust bioprocessing platform can provide sufficient numbers of hPSC‐CMs for companies developing regenerative medicine technologies to rescue, replace, and help repair damaged heart tissues and for pharmaceutical companies developing advanced biologics and drugs for regeneration of lost heart tissue using high‐throughput technologies. It is believed that this technology can expedite clinical progress in these areas to achieve a meaningful impact on improving clinical outcomes, cost of care, and quality of life for those patients disabled and experiencing heart disease.
Journal Article
Global transcriptomic analysis of induced cardiomyocytes predicts novel regulators for direct cardiac reprogramming
by
Talkhabi, Mahmood
,
Razavi, Seyed Morteza
,
Salari, Ali
in
And protein kinase
,
Biomedical and Life Sciences
,
Biomedicine
2017
Heart diseases are the most significant cause of morbidity and mortality in the world. De novo generated cardiomyocytes (CMs) are a great cellular source for cell-based therapy and other potential applications. Direct cardiac reprogramming is the newest method to produce CMs, known as induced cardiomyocytes (iCMs). During a direct cardiac reprogramming, also known as transdifferentiation, non-cardiac differentiated adult cells are reprogrammed to cardiac identity by forced expression of cardiac-specific transcription factors (TFs) or microRNAs. To this end, many different combinations of TFs (±microRNAs) have been reported for direct reprogramming of mouse or human fibroblasts to iCMs, although their efficiencies remain very low. It seems that the investigated TFs and microRNAs are not sufficient for efficient direct cardiac reprogramming and other cardiac specific factors may be required for increasing iCM production efficiency, as well as the quality of iCMs. Here, we analyzed gene expression data of cardiac fibroblast (CFs), iCMs and adult cardiomyocytes (aCMs). The up-regulated and down-regulated genes in CMs (aCMs and iCMs) were determined as CM and CF specific genes, respectively. Among CM specific genes, we found 153 transcriptional activators including some cardiac and non-cardiac TFs that potentially activate the expression of CM specific genes. We also identified that 85 protein kinases such as protein kinase D1 (PKD1), protein kinase A (PRKA), calcium/calmodulin-dependent protein kinase (CAMK), protein kinase C (PRKC), and insulin like growth factor 1 receptor (IGF1R) that are strongly involved in establishing CM identity. CM gene regulatory network constructed using protein kinases, transcriptional activators and intermediate proteins predicted some new transcriptional activators such as myocyte enhancer factor 2A (MEF2A) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A), which may be required for qualitatively and quantitatively efficient direct cardiac reprogramming. Taken together, this study provides new insights into the complexity of cell fate conversion and better understanding of the roles of transcriptional activators, signaling pathways and protein kinases in increasing the efficiency of direct cardiac reprogramming and maturity of iCMs.
Journal Article
Granulosa Cell Conditioned Medium Enhances The Rate of Mouse Oocyte In Vitro Maturation and Embryo Formation
by
Mottershead, David G
,
Zand, Elnaz
,
Talkhabi, Mahmood
in
conditioned medium
,
Cryopreservation
,
Embryos
2022
Objective: In vitro maturation (IVM) and cryopreservation of oocytes are two important parts of assisted reproductive technology (ART), but their efficacy is low. This study aimed to improve the quality of in vitro vitrified-warmed maturated oocytes using granulosa cell conditioned medium (GCCM). Materials and Methods: In the experimental study, fresh/non-vitrified and vitrified-warmed mouse germinal vesicle (GV) oocytes (as F and V) were in vitro maturated using basal medium (BM) and also BM supplemented with 50% GCCM as treated groups (GM), and categorized as FBM, FGM, VBM and VGM groups, respectively. The rate of successful IVM (MII oocyte formation), mitochondrial membrane potential and the viability of MII oocytes were determined using inverted microscopy, JC-1 and trypan blue staining. Then, the rate of in vitro fertilization (IVF) and subsequent two-cell embryo formation was calculated. Finally, the expression levels of Oct4, Sox2, Cdk-2, Gdf9, Integrin beta1 and Igf2 were analyzed using real-time polymerase chain reaction (PCR) in MII oocytes and two-cell embryos. Results: These analyses showed that GCCM significantly increased the IVM rate, oocyte meiotic resumption and mitochondrial membrane potential (P<0.05). In addition, the rate of IVF and two-cell embryo formation was significantly higher in FGM and VGM compared to FBM and VBM (P<0.05). Interestingly, GCCM significantly affected the expression of the studied genes. Conclusion:Our findings suggest that GCCM might be useful for improving the efficiency of IVM and the subsequent IVF outcomes.
Journal Article
RETRACTED ARTICLE: Transient Activation of Reprogramming Transcription Factors Using Protein Transduction Facilitates Conversion of Human Fibroblasts Toward Cardiomyocyte-Like Cells
by
Fonoudi, Hananeh
,
Ghazizadeh, Zaniar
,
Rassouli, Hassan
in
adults
,
Biochemistry
,
Biological Techniques
2017
Derivation of cardiomyocytes directly from patients’ own fibroblasts could offer a new therapeutic approach for those with ischemic heart disease. An essential step toward clinical application is to establish safe conversion of human fibroblasts into a cardiac fate. Here we aimed to efficiently and safely generate cardiomyocytes from human fibroblasts by direct delivery of reprogramming recombinant cell permeant form of reprogramming proteins followed by cardio-inductive signals. Human fetal and adult fibroblasts were transiently exposed to transactivator of transcription-fused recombinant OCT4, SOX2, KLF4 and c-MYC for 2 weeks and then were directly differentiated toward protein-induced cardiomyocyte-like cells (p-iCLCs) in a cardiac fate niche, carried out by treatment with a set of cardiogenic small molecules (sequential treatment of Chir, and IWP-2, SB431542 and purmorphamine). The cells showed cardiac phenotype over a period of 3 weeks without first undergoing reprogramming into or through a pluripotent intermediate, shown by lack of expression of key pluripotency markers. p-iCLCs exhibited cardiac features at both the gene and protein levels. Our study provides an alternative method for the generation of p-iCLCs which shortcut reprogramming toward allogeneic cardiomyocytes in a safe and efficient manner and could facilitate generation of genetic material-free cardiomyocytes.
Journal Article
Network pharmacology and bioinformatics analyses indicate a potential anti-aging effect of deferoxamine in mesenchymal stem cells
2025
BackgroundAging increases health risks, particularly cardiovascular diseases, neurological disorders, and cancer. Elderly individuals experience complications from polypharmacy, underscoring the need for innovative therapies. Mesenchymal stem cells (MSCs) are promising in regenerative medicine but decline in number and function with age. This decline is exacerbated by non-heme iron accumulation, leading to cellular damage. Reducing iron may enhance MSCs function in the elderly, with deferoxamine mesylate (DFO), an iron chelator, potentially alleviating oxidative damage.MethodsThis study employed network pharmacology and bioinformatics to explore DFO’s effects on aged MSCs. Target genes of DFO were obtained from the PharmMapper server, while aging-related MSCs genes were sourced from four databases. Functional enrichment, protein-protein interaction network construction, and hub gene identification were performed, with validation using the GSE35959 and GSE68374 microarray datasets from the Gene Expression Omnibus (GEO) database.ResultsA total of 148 common genes associated with the aging of MSCs treated with DFO were identified. Validation revealed that DFO significantly impacts key pathways, including the Rap1 and PI3K-Akt signaling pathways. Additionally, 13 primary target genes involved in the regulation of cell cycle and division were identified. Notably, 7 of these genes exhibited similar expression patterns in both in vitro and in vivo studies, suggesting they could be crucial for MSCs aging and primary targets of DFO.ConclusionsThese findings shed light on DFO’s mechanisms for enhancing MSCs function and delaying aging, providing a foundation for future therapeutic strategies aimed at promoting repair and regeneration in aging populations.
Journal Article
In vivo administration of G9a inhibitor A366 decreases osteogenic potential of bone marrow-derived mesenchymal stem cells
by
Talkhabi, Mahmood
,
Khanban, Hedyeh
,
Fattahi, Esmail
in
Bone marrow
,
Cell culture
,
Epigenetics
2019
Epigenetic mechanisms such as histone methylation are considered as one of the most important mediators that control stem cell behaviors such as proliferation, senescence and differentiation. G9a, a histone methyltransferase, has recently generated intense attention as potential target for controlling many diseases such as cancers. The aim of the present study was to evaluate the effect of
administration of A366, a G9a inhibitor, on proliferative and differentiation potential of bone marrow-derived mesenchymal stem cells (BM-MSCs). We inhibited G9a using intraperitoneally administration of A366, and we evaluated BM-MSC proliferation and differentiation behaviors
. Colony formation assay of BM-MSCs at primary culture showed that
administration of A366 reduced the colony forming capacity of BM-MSCs. Moreover, PDT of BM-MSC isolated from A366-treated rats was higher than control, especially in the early passages. BM-MSC isolated from A366-treated rats showed higher adipogenic potential compared to the control at the early passages as determined by gene expression and Oil Red staining. Whereas, osteogenic potential of BM-MSC isolated from A366-treated rats was lower than control, especially at early passages. Our results suggest that the epigenetic modifier such as A366, which seems to be a therapeutic approach for controlling diseases such as cancer, might also influence the proliferation and differentiation capacity of MSCs both
and
. Moreover, epigenetic modifying chemicals seem to be a strategy to manipulate MSC expansion capacity and differentiation propensity, as well as to efficiently involvement of MSCs in tissue homeostasis, cell-based therapy and tissue engineering.
Journal Article
Transient Activation of Reprogramming Transcription Factors Using Protein Transduction Facilitates Conversion of Human Fibroblasts Toward Cardiomyocyte-Like Cells
by
Fonoudi, Hananeh
,
Ghazizadeh, Zaniar
,
Rassouli, Hassan
in
Cellular Reprogramming - genetics
,
Cellular Reprogramming - physiology
,
Fibroblasts - metabolism
2017
Derivation of cardiomyocytes directly from patients' own fibroblasts could offer a new therapeutic approach for those with ischemic heart disease. An essential step toward clinical application is to establish safe conversion of human fibroblasts into a cardiac fate. Here we aimed to efficiently and safely generate cardiomyocytes from human fibroblasts by direct delivery of reprogramming recombinant cell permeant form of reprogramming proteins followed by cardio-inductive signals. Human fetal and adult fibroblasts were transiently exposed to transactivator of transcription-fused recombinant OCT4, SOX2, KLF4 and c-MYC for 2 weeks and then were directly differentiated toward protein-induced cardiomyocyte-like cells (p-iCLCs) in a cardiac fate niche, carried out by treatment with a set of cardiogenic small molecules (sequential treatment of Chir, and IWP-2, SB431542 and purmorphamine). The cells showed cardiac phenotype over a period of 3 weeks without first undergoing reprogramming into or through a pluripotent intermediate, shown by lack of expression of key pluripotency markers. p-iCLCs exhibited cardiac features at both the gene and protein levels. Our study provides an alternative method for the generation of p-iCLCs which shortcut reprogramming toward allogeneic cardiomyocytes in a safe and efficient manner and could facilitate generation of genetic material-free cardiomyocytes.
Journal Article