Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
52 result(s) for "Tan, Eng-Huat"
Sort by:
Novel therapeutic targets on the horizon for lung cancer
Lung cancer is a leading cause of cancer-related mortality worldwide, and is classically divided into two major histological subtypes: non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). Although NSCLC and SCLC are considered distinct entities with different genomic landscapes, emerging evidence highlights a convergence in therapeutically relevant targets for both histologies. In adenocarcinomas with defined alterations such as EGFR mutations and ALK translocations, targeted therapies are now first-line standard of care. By contrast, many experimental and targeted agents remain largely unsuccessful for SCLC. Intense preclinical research and clinical trials are underway to exploit unique traits of lung cancer, such as oncogene dependency, DNA damage response, angiogenesis, and cellular plasticity arising from presence of cancer stem cell lineages. In addition, the promising clinical activity observed in NSCLC in response to immune checkpoint blockade has spurred great interest in the field of immunooncology, with the scope to develop a diverse repertoire of synergistic and personalised immunotherapeutics. In this Review, we discuss novel therapeutic agents for lung cancer that are in early-stage development, and how prospective clinical trials and drug development may be shaped by a deeper understanding of this heterogeneous disease.
Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial
The irreversible ErbB family blocker afatinib and the reversible EGFR tyrosine kinase inhibitor gefitinib are approved for first-line treatment of EGFR mutation-positive non-small-cell lung cancer (NSCLC). We aimed to compare the efficacy and safety of afatinib and gefitinib in this setting. This multicentre, international, open-label, exploratory, randomised controlled phase 2B trial (LUX-Lung 7) was done at 64 centres in 13 countries. Treatment-naive patients with stage IIIB or IV NSCLC and a common EGFR mutation (exon 19 deletion or Leu858Arg) were randomly assigned (1:1) to receive afatinib (40 mg per day) or gefitinib (250 mg per day) until disease progression, or beyond if deemed beneficial by the investigator. Randomisation, stratified by EGFR mutation type and status of brain metastases, was done centrally using a validated number generating system implemented via an interactive voice or web-based response system with a block size of four. Clinicians and patients were not masked to treatment allocation; independent review of tumour response was done in a blinded manner. Coprimary endpoints were progression-free survival by independent central review, time-to-treatment failure, and overall survival. Efficacy analyses were done in the intention-to-treat population and safety analyses were done in patients who received at least one dose of study drug. This ongoing study is registered with ClinicalTrials.gov, number NCT01466660. Between Dec 13, 2011, and Aug 8, 2013, 319 patients were randomly assigned (160 to afatinib and 159 to gefitinib). Median follow-up was 27·3 months (IQR 15·3–33·9). Progression-free survival (median 11·0 months [95% CI 10·6–12·9] with afatinib vs 10·9 months [9·1–11·5] with gefitinib; hazard ratio [HR] 0·73 [95% CI 0·57–0·95], p=0·017) and time-to-treatment failure (median 13·7 months [95% CI 11·9–15·0] with afatinib vs 11·5 months [10·1–13·1] with gefitinib; HR 0·73 [95% CI 0·58–0·92], p=0·0073) were significantly longer with afatinib than with gefitinib. Overall survival data are not mature. The most common treatment-related grade 3 or 4 adverse events were diarrhoea (20 [13%] of 160 patients given afatinib vs two [1%] of 159 given gefitinib) and rash or acne (15 [9%] patients given afatinib vs five [3%] of those given gefitinib) and liver enzyme elevations (no patients given afatinib vs 14 [9%] of those given gefitinib). Serious treatment-related adverse events occurred in 17 (11%) patients in the afatinib group and seven (4%) in the gefitinib group. Ten (6%) patients in each group discontinued treatment due to drug-related adverse events. 15 (9%) fatal adverse events occurred in the afatinib group and ten (6%) in the gefitinib group. All but one of these deaths were considered unrelated to treatment; one patient in the gefitinib group died from drug-related hepatic and renal failure. Afatinib significantly improved outcomes in treatment-naive patients with EGFR-mutated NSCLC compared with gefitinib, with a manageable tolerability profile. These data are potentially important for clinical decision making in this patient population. Boehringer Ingelheim.
Elucidating the genomic architecture of Asian EGFR-mutant lung adenocarcinoma through multi-region exome sequencing
EGFR -mutant lung adenocarcinomas (LUAD) display diverse clinical trajectories and are characterized by rapid but short-lived responses to EGFR tyrosine kinase inhibitors (TKIs). Through sequencing of 79 spatially distinct regions from 16 early stage tumors, we show that despite low mutation burdens, EGFR -mutant Asian LUADs unexpectedly exhibit a complex genomic landscape with frequent and early whole-genome doubling, aneuploidy, and high clonal diversity. Multiple truncal alterations, including TP53 mutations and loss of CDKN2A and RB1 , converge on cell cycle dysregulation, with late sector-specific high-amplitude amplifications and deletions that potentially beget drug resistant clones. We highlight the association between genomic architecture and clinical phenotypes, such as co-occurring truncal drivers and primary TKI resistance. Through comparative analysis with published smoking-related LUAD, we postulate that the high intra-tumor heterogeneity observed in Asian EGFR -mutant LUAD may be contributed by an early dominant driver, genomic instability, and low background mutation rates. EGFR mutant lung adenocarcinoma (LUAD) exhibit diverse clinical outcomes in response to targeted therapies. Here the authors show that these LUADs involve a complex genomic landscape with high intratumor heterogeneity, providing insights into the evolutionary trajectory of oncogene-driven LUAD and potential mediators of EGFR TKI resistance.
Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial
Afatinib, an irreversible ErbB-family blocker, has shown preclinical activity when tested in EGFR mutant models with mutations that confer resistance to EGFR tyrosine-kinase inhibitors. We aimed to assess its efficacy in patients with advanced lung adenocarcinoma with previous treatment failure on EGFR tyrosine-kinase inhibitors. In this phase 2b/3 trial, we enrolled patients with stage IIIB or IV adenocarcinoma and an Eastern Cooperative Oncology Group performance (ECOG) performance score of 0–2 who had received one or two previous chemotherapy regimens and had disease progression after at least 12 weeks of treatment with erlotinib or gefitinib. We used a computer-generated sequence to randomly allocate patients (2:1) to either afatinib (50 mg per day) or placebo; all patients received best supportive care. Randomisation was done in blocks of three and was stratified by sex and baseline ECOG performance status (0–1 vs 2). Investigators, patients, and the trial sponsor were masked to treatment assignment. The primary endpoint was overall survival (from date of randomisation to death), analysed on an intention-to-treat basis. This study is registered with ClinicalTrials.gov, number NCT00656136. Between May 26, 2008, and Sept 21, 2009, we identified 697 patients, 585 of whom were randomly allocated to treatment (390 to afatinib, 195 to placebo). Median overall survival was 10·8 months (95% CI 10·0–12·0) in the afatinib group and 12·0 months (10·2–14·3) in the placebo group (hazard ratio 1·08, 95% CI 0·86–1·35; p=0·74). Median progression-free survival was longer in the afatinib group (3·3 months, 95% CI 2·79–4·40) than it was in the placebo group (1·1 months, 0·95–1·68; hazard ratio 0·38, 95% CI 0·31–0·48; p<0·0001). No complete responses to treatment were noted; 29 (7%) patients had a partial response in the afatinib group, as did one patient in the placebo group. Subsequent cancer treatment was given to 257 (68%) patients in the afatinib group and 153 (79%) patients in the placebo group. The most common adverse events in the afatinib group were diarrhoea (339 [87%] of 390 patients; 66 [17%] were grade 3) and rash or acne (305 [78%] patients; 56 [14%] were grade 3). These events occurred less often in the placebo group (18 [9%] of 195 patients had diarrhoea; 31 [16%] had rash or acne), all being grade 1 or 2. Drug-related serious adverse events occurred in 39 (10%) patients in the afatinib group and one (<1%) patient in the placebo group. We recorded two possibly treatment-related deaths in the afatinib group. Although we recorded no benefit in terms of overall survival with afatinib (which might have been affected by cancer treatments given after progression in both groups), our findings for progression-free survival and response to treatment suggest that afatinib could be of some benefit to patients with advanced lung adenocarcinoma who have failed at least 12 weeks of previous EGFR tyrosine-kinase inhibitor treatment. Boehringer Ingelheim Inc.
Clinical efficacy and biomarker analysis of dual PD-1/CTLA-4 blockade in recurrent/metastatic EBV-associated nasopharyngeal carcinoma
Single-agent checkpoint inhibitor (CPI) activity in Epstein-Barr Virus (EBV) related nasopharyngeal carcinoma (NPC) is limited. Dual CPI shows increased activity in solid cancers. In this single-arm phase II trial (NCT03097939), 40 patients with recurrent/metastatic EBV-positive NPC who failed prior chemotherapy receive nivolumab 3 mg/kg every 2 weeks and ipilimumab 1 mg/kg every 6 weeks. Primary outcome of best overall response rate (BOR) and secondary outcomes (progression-free survival [PFS], clinical benefit rate, adverse events, duration of response, time to progression, overall survival [OS]) are reported. The BOR is 38% with median PFS and OS of 5.3 and 19.5 months, respectively. This regimen is well-tolerated and treatment-related adverse events requiring discontinuation are low. Biomarker analysis shows no correlation of outcomes to PD-L1 expression or tumor mutation burden. While the BOR does not meet pre-planned estimates, patients with low plasma EBV-DNA titre (<7800 IU/ml) trend to better response and PFS. Deep immunophenotyping of pre- and on-treatment tumor biopsies demonstrate early activation of the adaptive immune response, with T-cell cytotoxicity seen in responders prior to any clinically evident response. Immune-subpopulation profiling also identifies specific PD-1 and CTLA-4 expressing CD8 subpopulations that predict for response to combined immune checkpoint blockade in NPC. Dual PD-1 and CTLA-4 checkpoint blockade has proven effective in several cancer types. Here the authors report the results of a clinical trial of anti-PD1 (nivolumab) and anti-CTLA4 (ipilimumab) in patients with recurrent/metastatic EBV-positive nasopharyngeal carcinoma.
First-line afatinib vs gefitinib for patients with EGFR mutation-positive NSCLC (LUX-Lung 7): impact of afatinib dose adjustment and analysis of mode of initial progression for patients who continued treatment beyond progression
PurposeIn the randomized phase IIb LUX-Lung 7 trial, afatinib significantly improved progression-free survival (PFS) and time-to-treatment failure vs gefitinib in patients with treatment-naïve epidermal growth factor receptor mutation-positive non-small cell lung cancer. We report post hoc analyses of tolerability-guided dose adjustment for afatinib and summarize the clinical characteristics of patients who continued afatinib/gefitinib beyond initial radiological progression in LUX-Lung 7.MethodsPatients received afatinib 40 mg/day or gefitinib 250 mg/day until investigator-assessed progression or beyond if beneficial. In case of selected treatment-related adverse events (TRAEs), the afatinib dose could be reduced by 10-mg decrements to minimum 20 mg (only dose interruptions were permitted with gefitinib).ResultsAll randomized patients were treated (afatinib, n = 160; gefitinib, n = 159). Sixty-three patients had afatinib dose reduction (< 40 mg/day; 47 within first 6 months). Dose reduction decreased TRAE incidence/severity (before vs after; all grade/grade 3: 100.0%/63.5% vs 90.5%/23.8%). There was no evidence of significant difference in PFS for patients who received < 40 mg/day vs ≥ 40 mg/day for the first 6 months [median: 12.8 vs 11.0 months; hazard ratio 1.34 (95% confidence interval 0.90–2.00)]. Twenty-four and 26 patients continued afatinib and gefitinib, respectively, beyond progression in target lesions; median time from nadir of target lesion diameters to initial progression was 6.7 months and 5.6 months. Of these patients, ~ 70% had objective response or non-complete response/non-progressive disease in non-target lesions at initial progression.ConclusionsProtocol-defined dose adjustment of afatinib may allow patients to remain on treatment longer, maximizing clinical benefit even in the presence of radiological progression.
Landscape of germline pathogenic variants in patients with dual primary breast and lung cancer
Background Cancer predisposition is most often studied in the context of single cancers. However, inherited cancer predispositions can also give rise to multiple primary cancers. Yet, there is a paucity of studies on genetic predisposition in multiple primary cancers, especially those outside of well-defined cancer predisposition syndromes. This study aimed to identify germline variants associated with dual primary cancers of the breast and lung. Methods Exome sequencing was performed on germline DNA from 55 Singapore patients (52 [95%] never-smokers) with dual primaries in the breast and lung, confirmed by histopathology. Using two large control cohorts: the local SG10K_Health (n = 9770) and gnomAD non-cancer East Asians (n = 9626); and two additional local case cohorts of early-onset or familial breast cancer (n = 290), and lung cancer (n = 209), variants were assessed for pathogenicity in accordance with ACMG/AMP guidelines. In particular, comparisons were made with known pathogenic or likely pathogenic variants in the ClinVar database, pathogenicity predictions were obtained from in silico prediction software, and case–control association analyses were performed. Results Altogether, we identified 19 pathogenic or likely pathogenic variants from 16 genes, detected in 17 of 55 (31%) patients. Six of the 19 variants were identified using ClinVar, while 13 variants were classified pathogenic or likely pathogenic using ACMG/AMP guidelines. The 16 genes include well-known cancer predisposition genes such as BRCA2, TP53, and RAD51D; but also lesser known cancer genes EXT2 , WWOX , GATA2 , and GPC3. Most of these genes are involved in DNA damage repair, reaffirming the role of impaired DNA repair mechanisms in the development of multiple malignancies. These variants warrant further investigations in additional populations. Conclusions We have identified both known and novel variants significantly enriched in patients with primary breast and lung malignancies, expanding the body of known cancer predisposition variants for both breast and lung cancer. These variants are mostly from genes involved in DNA repair, affirming the role of impaired DNA repair in the predisposition and development of multiple cancers.
Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study
Lorlatinib is a potent, brain-penetrant, third-generation inhibitor of ALK and ROS1 tyrosine kinases with broad coverage of ALK mutations. In a phase 1 study, activity was seen in patients with ALK-positive non-small-cell lung cancer, most of whom had CNS metastases and progression after ALK-directed therapy. We aimed to analyse the overall and intracranial antitumour activity of lorlatinib in patients with ALK-positive, advanced non-small-cell lung cancer. In this phase 2 study, patients with histologically or cytologically ALK-positive or ROS1-positive, advanced, non-small-cell lung cancer, with or without CNS metastases, with an Eastern Cooperative Oncology Group performance status of 0, 1, or 2, and adequate end-organ function were eligible. Patients were enrolled into six different expansion cohorts (EXP1–6) on the basis of ALK and ROS1 status and previous therapy, and were given lorlatinib 100 mg orally once daily continuously in 21-day cycles. The primary endpoint was overall and intracranial tumour response by independent central review, assessed in pooled subgroups of ALK-positive patients. Analyses of activity and safety were based on the safety analysis set (ie, all patients who received at least one dose of lorlatinib) as assessed by independent central review. Patients with measurable CNS metastases at baseline by independent central review were included in the intracranial activity analyses. In this report, we present lorlatinib activity data for the ALK-positive patients (EXP1–5 only), and safety data for all treated patients (EXP1–6). This study is ongoing and is registered with ClinicalTrials.gov, number NCT01970865. Between Sept 15, 2015, and Oct 3, 2016, 276 patients were enrolled: 30 who were ALK positive and treatment naive (EXP1); 59 who were ALK positive and received previous crizotinib without (n=27; EXP2) or with (n=32; EXP3A) previous chemotherapy; 28 who were ALK positive and received one previous non-crizotinib ALK tyrosine kinase inhibitor, with or without chemotherapy (EXP3B); 112 who were ALK positive with two (n=66; EXP4) or three (n=46; EXP5) previous ALK tyrosine kinase inhibitors with or without chemotherapy; and 47 who were ROS1 positive with any previous treatment (EXP6). One patient in EXP4 died before receiving lorlatinib and was excluded from the safety analysis set. In treatment-naive patients (EXP1), an objective response was achieved in 27 (90·0%; 95% CI 73·5–97·9) of 30 patients. Three patients in EXP1 had measurable baseline CNS lesions per independent central review, and objective intracranial responses were observed in two (66·7%; 95% CI 9·4–99·2). In ALK-positive patients with at least one previous ALK tyrosine kinase inhibitor (EXP2–5), objective responses were achieved in 93 (47·0%; 39·9–54·2) of 198 patients and objective intracranial response in those with measurable baseline CNS lesions in 51 (63·0%; 51·5–73·4) of 81 patients. Objective response was achieved in 41 (69·5%; 95% CI 56·1–80·8) of 59 patients who had only received previous crizotinib (EXP2–3A), nine (32·1%; 15·9–52·4) of 28 patients with one previous non-crizotinib ALK tyrosine kinase inhibitor (EXP3B), and 43 (38·7%; 29·6–48·5) of 111 patients with two or more previous ALK tyrosine kinase inhibitors (EXP4–5). Objective intracranial response was achieved in 20 (87·0%; 95% CI 66·4–97·2) of 23 patients with measurable baseline CNS lesions in EXP2–3A, five (55·6%; 21·2–86·3) of nine patients in EXP3B, and 26 (53·1%; 38·3–67·5) of 49 patients in EXP4–5. The most common treatment-related adverse events across all patients were hypercholesterolaemia (224 [81%] of 275 patients overall and 43 [16%] grade 3–4) and hypertriglyceridaemia (166 [60%] overall and 43 [16%] grade 3–4). Serious treatment-related adverse events occurred in 19 (7%) of 275 patients and seven patients (3%) permanently discontinued treatment because of treatment-related adverse events. No treatment-related deaths were reported. Consistent with its broad ALK mutational coverage and CNS penetration, lorlatinib showed substantial overall and intracranial activity both in treatment-naive patients with ALK-positive non-small-cell lung cancer, and in those who had progressed on crizotinib, second-generation ALK tyrosine kinase inhibitors, or after up to three previous ALK tyrosine kinase inhibitors. Thus, lorlatinib could represent an effective treatment option for patients with ALK-positive non-small-cell lung cancer in first-line or subsequent therapy. Pfizer.
Methionine is a metabolic dependency of tumor-initiating cells
Understanding cellular metabolism holds immense potential for developing new classes of therapeutics that target metabolic pathways in cancer. Metabolic pathways are altered in bulk neoplastic cells in comparison to normal tissues. However, carcinoma cells within tumors are heterogeneous, and tumor-initiating cells (TICs) are important therapeutic targets that have remained metabolically uncharacterized. To understand their metabolic alterations, we performed metabolomics and metabolite tracing analyses, which revealed that TICs have highly elevated methionine cycle activity and transmethylation rates that are driven by MAT2A. High methionine cycle activity causes methionine consumption to far outstrip its regeneration, leading to addiction to exogenous methionine. Pharmacological inhibition of the methionine cycle, even transiently, is sufficient to cripple the tumor-initiating capability of these cells. Methionine cycle flux specifically influences the epigenetic state of cancer cells and drives tumor initiation. Methionine cycle enzymes are also enriched in other tumor types, and MAT2A expression impinges upon the sensitivity of certain cancer cells to therapeutic inhibition.Elevated activity of the methionine cycle is essential for cancer stem cell tumorigenesis and represents a therapeutic vulnerability.