Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
84 result(s) for "Tanaka, Fukuyo"
Sort by:
Flavor and Texture Characteristics of ‘Fuji’ and Related Apple (Malus domestica L.) Cultivars, Focusing on the Rich Watercore
Watercore is a so-called physiological disorder of apple (Malus domestica L.) that commonly occurs in several well-known cultivars. It is associated with a rapid softening of the flesh that causes a marked changed in flavor and texture. In Asia, apples with watercore are preferred and considered a delicacy because of their enhanced sweet flavor. The ‘Fuji’ cultivar, the first cultivar with rich watercore that is free from texture deterioration, has played a key role in the development of the market for desirable watercored apples. This review aimed to summarize and highlight recent studies related to the physiology of watercore in apples with special focus on ‘Fuji’ and related cultivars.
Identification of Pseudomonas strains for the biological control of soybean red crown root rot
Soybean red crown root rot (RCR), caused by the soil-borne fungal pathogen, Calonectria ilicicola , is the most destructive disease affecting soybean production in Japan. To date, no resistant cultivars or effective fungicides have been developed to control this disease. In this study, we evaluated 13 bacterial strains to determine their efficacy in controlling C. ilicicola . We first investigated whether the volatile organic compounds (VOCs) emitted by the bacterial strains exhibited any antifungal activity against C. ilicicola using the double-plate chamber method. The results showed that VOCs from three Pseudomonas bacterial strains, OFT2 ( Pseudomonas sp.), OFT5 ( Pseudomonas sp.), and Cab57 ( Pseudomonas protegens ), exhibited strong inhibitory activity against C. ilicicola mycelial growth. Some antifungal activity was also observed in the culture supernatants of these Pseudomonas strains. Greenhouse soil inoculation tests showed that application of OFT2, OFT5, and Cab57 cultures around soybean seeds after seed sowing significantly reduced the severity of RCR, as shown by up to 40% reduction in C. ilicicola fungal growth in the roots and 180–200% increase in shoot and root fresh weights compared to the water control. Our results suggest that OFT2, Cab57, and OFT5 produce potent antifungal compounds against C. ilicicola , thereby showing considerable potential for the biological control of C. ilicicola during soybean production.
Synergistic N2-fixation and salt stress mitigation in soybean through dual inoculation of ACC deaminase-producing Pseudomonas and Bradyrhizobium
We investigated the potential dual application of two Bradyrhizobium strains ( B. diazoefficiens USDA110 and B. ottawaense SG09) and plant growth-promoting bacteria, PGPB ( Pseudomonas spp.: OFT2 and OFT5), to improve nodulation and N 2 -fixation in soybean plants. The growth-promoting effects of dual inoculation were observed on plant growth, physiology, and nodulation of soybean under normal conditions compared with plants individually inoculated with either USDA110 or SG09. Both OFT2 and OFT5 promoted N 2 -fixation by 11% and 56%, respectively, when dual inoculation with USDA110 and by 76% and 81%, respectively, when dual inoculation with SG09. Salinity stress significantly reduces soybean growth, physiology, nutrient uptake, nodulation, and N 2 -fixation. However, these adverse effects were attenuated by the dual inoculation of PGPB and rhizobia depending on the combination of inoculants. In particular, dual inoculation of PGPB with SG09 was more effective in enhancing the salt tolerance of soybean by reducing salt-induced ethylene production and improving nutrient uptake. However, no such effect was observed with the combined inoculation of USDA110 and OFT5. An effective symbiotic association between SG09 and two Pseudomonas bacteria can be considered a beneficial approach to improving the symbiotic efficiency of nodulation and mitigating salinity stress in soybeans.
Direct evidence for dynamics of cell heterogeneity in watercored apples: turgor-associated metabolic modifications and within-fruit water potential gradient unveiled by single-cell analyses
Watercore is a physiological disorder in apple (Malus × domestica Borkh.) fruits that appears as water-soaked tissues adjacent to the vascular core, although there is little information on what exactly occurs at cell level in the watercored apples, particularly from the viewpoint of cell water relations. By combining picolitre pressure-probe electrospray-ionization mass spectrometry (picoPPESI-MS) with freezing point osmometry and vapor pressure osmometry, changes in cell water status and metabolisms were spatially assayed in the same fruit. In the watercored fruit, total soluble solid was lower in the watercore region than the normal outer parenchyma region, but there was no spatial difference in the osmotic potentials determined with freezing point osmometry. Importantly, a disagreement between the osmotic potentials determined with two methods has been observed in the watercore region, indicating the presence of significant volatile compounds in the cellular fluids collected. In the watercored fruit, cell turgor varied across flesh, and a steeper water potential gradient has been established from the normal outer parenchyma region to the watercore region, retaining the potential to transport water to the watercore region. Site-specific analysis using picoPPESI-MS revealed that together with a reduction in turgor, remarkable metabolic modifications through fermentation have occurred at the border, inducing greater production of watercore-related volatile compounds, such as alcohols and esters, compared with other regions. Because alcohols including ethanol have low reflection coefficients, it is very likely that these molecules would have rapidly penetrated membranes to accumulate in apoplast to fill. In addition to the water potential gradient detected here, this would physically contribute to the appearance with high tissue transparency and changes in colour differences. Therefore, it is concluded that these spatial changes in cell water relations are closely associated with watercore symptoms as well as with metabolic alterations.
Growth and Yield Dynamics in Three Japanese Soybean Cultivars with Plant Growth-Promoting Pseudomonas spp. and Bradyrhizobium ottawaense Co-Inoculation
Co-inoculation of soybeans with Bradyrhizobium and plant growth-promoting bacteria has displayed promise for enhancing plant growth, but concrete evidence of its impact on soybean yields is limited. Therefore, this study assessed the comparative efficacy of two 1-aminocyclopropane-1-carboxylate deaminase-producing Pseudomonas species (OFT2 and OFT5) co-inoculated with Bradyrhizobium ottawaense (SG09) on the growth, physiology, nodulation efficiency, and grain yield of three major Japanese soybean cultivars: Enrei, Fukuyutaka, and Satonohohoemi. The experiments were conducted in a warehouse under natural light conditions. The treatments included the inoculation of SG09, SG09 + OFT2, and SG09 + OFT5. Compared with Bradyrhizobium inoculation alone, co-inoculation led to significant improvements in nodulation efficiency, growth, and physiological performance in the Enrei and Fukuyutaka cultivars, but not in the Satonohohoemi cultivar. Furthermore, co-inoculation significantly boosted the total nitrogen content and ion uptake in the shoots, ultimately leading to a remarkable improvement in the grain yield in the Enrei and Fukuyutaka cultivars. These findings contribute to clarifying the interplay among Bradyrhizobium, Pseudomonas, and the plant host cultivar. Notably, Bradyrhizobium–Pseudomonas co-inoculation represents a potentially effective biofertilization strategy for soybean production, highlighting promising avenues for sustainable agricultural practices.
Evaluation of the anti-hyperglycemic effect and safety of microorganism 1-deoxynojirimycin
1-Deoxynojirimycin (DNJ) is a potent α-glucosidase inhibitor and thus beneficial for prevention of diabetes. While we have succeeded in obtaining the culture supernatant extract (CSE) rich in DNJ from microorganism source, information regarding its anti-hyperglycemic effect and safety were still limited. Therefore, this study was aimed to evaluate the anti-hyperglycemic effect and safety of microorganism DNJ. Oral sucrose tolerance test was performed, and the result showed that CSE was able to significantly suppress the blood glucose elevation and suggested DNJ as the main active compound. To determine its safety, the absorption and excretion of microorganism DNJ were evaluated using 15N labeling method. Our findings investigated the recovery rate of 15N from DNJ reached 80% up to 48 hours after oral administration, suggesting its rapid excretion, suggesting the safety of DNJ. This study verified the functional properties and safety of DNJ from microorganisms, suggesting its potential use for functional purpose.
Rice Chalky Ring Formation Caused by Temporal Reduction in Starch Biosynthesis during Osmotic Adjustment under Foehn-Induced Dry Wind
Foehn-like extreme hot and dry wind conditions (34°C, >2.5 kPa vapor pressure deficit, and 7 m s(-1)) strongly affect grain quality in rice (Oryza sativa L.). This is a current concern because of the increasing frequency and intensity of combined heat and water-deficit stress under climate change. Foehn-induced dry wind conditions during the grain-filling stage increase ring-shaped chalkiness as a result of spatiotemporal reduction in starch accumulation in the endosperm, but kernel growth is sometimes maintained by osmotic adjustment. Here, we assess the effects of dry wind on chalky ring formation in environmentally controlled growth chambers. Our results showed that hot and dry wind conditions that lasted for >24 h dramatically increased chalky ring formation. Hot and dry wind conditions temporarily reduced panicle water potential to -0.65 MPa; however, kernel growth was maintained by osmotic adjustment at control levels with increased transport of assimilate to the growing kernels. Dynamic tracer analysis with a nano-electrospray-ionization Orbitrap mass spectrometer and quantitative polymerase chain reaction analysis revealed that starch degradation was negligible in the short-term treatment. Overall expression of starch synthesis-related genes was found to be down-regulated at moderately low water potential. Because the events observed at low water potential preceded the packing of starch granules in cells, we concluded that reduced rates of starch biosynthesis play a central role in the events of cellular metabolism that are altered at osmotic adjustment, which leads to chalky ring formation under short-term hot and dry wind conditions.
Turgor-responsive starch phosphorylation in Oryza sativa stems: A primary event of starch degradation associated with grain-filling ability
Grain filling ability is mainly affected by the translocation of carbohydrates generated from temporarily stored stem starch in most field crops including rice (Oryza sativa L.). The partitioning of non-structural stem carbohydrates has been recognized as an important trait for raising the yield ceiling, yet we still do not fully understand how carbohydrate partitioning occurs in the stems. In this study, two rice subspecies that exhibit different patterns of non-structural stem carbohydrates partitioning, a japonica-dominant cultivar, Momiroman, and an indica-dominant cultivar, Hokuriku 193, were used as the model system to study the relationship between turgor pressure and metabolic regulation of non-structural stem carbohydrates, by combining the water status measurement with gene expression analysis and a dynamic prefixed 13C tracer analysis using a mass spectrometer. Here, we report a clear varietal difference in turgor-associated starch phosphorylation occurred at the initiation of non-structural carbohydrate partitioning. The data indicated that starch degradation in Hokuriku 193 stems occurred at full-heading, 5 days earlier than in Momiroman, contributing to greater sink filling. Gene expression analysis revealed that expression pattern of the gene encoding α-glucan, water dikinase (GWD1) was similar between two varieties, and the maximum expression level in Hokuriku 193, reached at full heading (4 DAH), was greater than in Momiroman, leading to an earlier increase in a series of amylase-related gene expression in Hokuriku 193. In both varieties, peaks in turgor pressure preceded the increases in GWD1 expression, and changes in GWD1 expression was correlated with turgor pressure. Additionally, a threshold is likely to exist for GWD1 expression to facilitate starch degradation. Taken together, these results raise the possibility that turgor-associated starch phosphorylation in cells is responsible for the metabolism that leads to starch degradation. Because the two cultivars exhibited remarkable varietal differences in the pattern of non-structural carbohydrate partitioning, our findings propose that the observed difference in grain-filling ability originated from turgor-associated regulation of starch phosphorylation in stem parenchyma cells. Further understanding of the molecular mechanism of turgor-regulation may provide a new selection criterion for breaking the yield barriers in crop production.
Effects of Inoculating the Diazotrophic Endophyte Bradyrhizobium sp. AT1 on Different Cultivars of Sweet Potato (Ipomoea batatas L. Lam.)
Owing to the worldwide shortage of nitrogen (N) fertilizers, diazotrophic endophytes have received increasing attention as biofertilizers. In this study, we investigated the inoculation effects of a diazotrophic endophyte (Bradyrhizobium sp. AT1) on three different cultivars of sweet potato (cvs. Beniazuma, Ayamurasaki, and Kokei No. 14) under pot, container, and different field conditions. Following inoculation, the root length was increased in cvs. Beniazuma and Ayamurasaki but suppressed in cv. Kokei No. 14 in pots, filled with a mixture of vermiculite, potting soil, and pearlite. AT1 inoculation also increased shoot growth in cv. Beniazuma and tuber formation in cv. Ayamurasaki in containers filled with vermiculite, potting soil, and light-colored Andosol. In field experiments, carried out at two field sites with the three cultivars, AT1 inoculation increased the growth of cvs. Beniazuma and Ayamurasaki, but it had almost no effect on cv. Kokei No. 14. In addition to growth promotion, inoculation of micropropagated sweet potato cv. Beniazuma with AT1 led to N derived from air (Ndfa) and acetylene reduction activity (ARA) five months after inoculation. Our studies indicate that AT1 inoculation can enhance the growth of sweet potato and promote N2 fixation.
Multiple strategies for heat adaptation to prevent chalkiness in the rice endosperm
Heat-induced chalkiness of rice grains is a major concern for rice production, particularly with respect to climate change. Although the formation of chalkiness in the endosperm is suppressed by nitrogen, little is known about the cell-specific dynamics of this process. Here, using picolitre pressure-probe electrospray-ionization mass spectrometry together with transmission electron microscopy and turgor measurements, we examine heat-induced chalkiness in single endosperm cells of intact rice seeds produced under controlled environmental conditions. Exposure to heat stress decreased turgor pressure and increased the cytosolic accumulation of sugars, glutathione, and amino acids, particularly cysteine. Heat stress also led to a significant enlargement of the protein storage vacuoles but with little accumulation of storage proteins. Crucially, this heat-induced partial arrest of amyloplast development led to formation of chalkiness. Whilst increased nitrogen availability also resulted in increased accumulation of amino acids, there was no decrease in turgor pressure. The heat-induced accumulation of cysteine and glutathione was much less marked in the presence of nitrogen, and storage proteins were produced without chalkiness. These data provide important information on the cell dynamics of heat acclimation that underpin the formation of chalkiness in the rice endosperm. We conclude that rice seeds employ multiple strategies to mitigate the adverse effects of heat stress in a manner that is dependent on nitrogen availability, and that the regulation of protein synthesis may play a crucial role in optimizing organelle compartmentation during heat adaption.