Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
36 result(s) for "Tanes, Ceylan"
Sort by:
Bile salt hydrolase catalyses formation of amine-conjugated bile acids
Bacteria in the gastrointestinal tract produce amino acid bile acid amidates that can affect host-mediated metabolic processes 1 – 6 ; however, the bacterial gene(s) responsible for their production remain unknown. Herein, we report that bile salt hydrolase (BSH) possesses dual functions in bile acid metabolism. Specifically, we identified a previously unknown role for BSH as an amine N -acyltransferase that conjugates amines to bile acids, thus forming bacterial bile acid amidates (BBAAs). To characterize this amine N -acyltransferase BSH activity, we used pharmacological inhibition of BSH, heterologous expression of bsh and mutants in Escherichia coli and bsh knockout and complementation in Bacteroides fragilis to demonstrate that BSH generates BBAAs. We further show in a human infant cohort that BBAA production is positively correlated with the colonization of bsh- expressing bacteria. Lastly, we report that in cell culture models, BBAAs activate host ligand-activated transcription factors including the pregnane X receptor and the aryl hydrocarbon receptor. These findings enhance our understanding of how gut bacteria, through the promiscuous actions of BSH, have a significant role in regulating the bile acid metabolic network. We find that bile salt hydrolase N -acyltransferase activity can form bacterial bile acid amidates that are positively correlated with the colonization of gut bacteria that assist in the regulation of the bile acid metabolic network.
The impact of environmental pH on the gut microbiota community structure and short chain fatty acid production
Abstract Environmental pH is a critical parameter for maintenance of the gut microbiota. Here, the impact of pH on the gut microbiota luminal and mucosal community structure and short chain fatty acid (SCFA) production was evaluated in vitro, and data compiled to reveal a donor-independent response to an increase or decrease in environmental pH. The results found that raising environmental pH significantly increased luminal community richness and decreased mucosal community evenness. This corresponded with an increased abundance of Ruminococcaceae Ruminococcus and Erysipelotrichaceae Erysipelatoclostridium, and a decreased abundance of Coriobacteriaceae Collinsella and Enterobacteriaceae Shigella for both the luminal and mucosal communities. Total SCFA levels were significantly higher, primarily due to an increase in acetic and 2-methylbutanoic acids. Lowering pH decreased luminal community evenness and decreased mucosal community evenness and richness. This corresponded with an increased abundance of Lachnospiraceae Enterocloster, Veillonellaceae Megasphaera, Veillonellaceae Sporomusa, Erysipelotrichaceae Eubacterium, and Alcaligenaceae Sutterella, and decreased abundance of Odoribacteraceae Butyricimonas, Fusobacteriaceae Fusobacterium, Veillonellaceae Phascolarctobacterium, and multiple Enterobacteriaceae species for both the luminal and mucosal communities. Total SCFA levels were significantly lower, with an observed drop in acetic and propionic acids, and increased butyric and valeric acids. Taken together, these results indicate that alterations to environmental pH can modulate the gut microbiota community structure and function, and some changes may occur in a donor-independent manner. Changes to environmental pH alter the gut microbiota structure and function in vitro.
Optimizing methods and dodging pitfalls in microbiome research
Research on the human microbiome has yielded numerous insights into health and disease, but also has resulted in a wealth of experimental artifacts. Here, we present suggestions for optimizing experimental design and avoiding known pitfalls, organized in the typical order in which studies are carried out. We first review best practices in experimental design and introduce common confounders such as age, diet, antibiotic use, pet ownership, longitudinal instability, and microbial sharing during cohousing in animal studies. Typically, samples will need to be stored, so we provide data on best practices for several sample types. We then discuss design and analysis of positive and negative controls, which should always be run with experimental samples. We introduce a convenient set of non-biological DNA sequences that can be useful as positive controls for high-volume analysis. Careful analysis of negative and positive controls is particularly important in studies of samples with low microbial biomass, where contamination can comprise most or all of a sample. Lastly, we summarize approaches to enhancing experimental robustness by careful control of multiple comparisons and to comparing discovery and validation cohorts. We hope the experimental tactics summarized here will help researchers in this exciting field advance their studies efficiently while avoiding errors.
THE MODULATORY EFFECT OF PREBIOTIC INULIN-TYPE FRUCTANS ON THE MICROBIOME PROFILE OF CHILDREN WITH INFLAMMATORY BOWEL DISEASE: A DOUBLE-BLIND RANDOMIZED CONTROLLED TRIAL
Abstract OBJECTIVE The intestinal microbiota plays a pivotal role in the inflammation associated with inflammatory bowel disease (IBD) through their interaction with the mucosal immune system. Prebiotic interventions using inulin-type fructans increase faecal and mucosal bifidobacteria as well as butyrate producing bacteria in healthy volunteers. The aim of this study was to assess the effect of a two-month oligofructose-enriched inulin (OI) supplementation on the microbiome composition, metabolome of children with IBD with subclinical disease activity. DESIGN We performed a single-center, double-blind, placebo-controlled trial at the Children’s Hospital of Philadelphia. Participants included children, 6–21 years old, with subclinical active colonic IBD as defined by a fecal calprotectin level between 50 and 500 μg/g and clinical remission. Participants were randomly assigned 1:1 to consume prebiotic OI or maltodextrin placebo for 8 weeks. Fecal and rectal swabs samples were collected at baseline, week 4, 8 and 16 for fecal calprotectin, microbiome profiling (shotgun metagenomic sequencing) and matching metabolomics (liquid chromatography tandem mass spectrometry). RESULTS The study randomized 68 patients, and 59 were included in the efficacy analyses. The global fecal and mucosal microbiome composition was significantly altered by prebiotic intake and specific inulin-induced increase in relative abundance of Bifidobacterium and Anaerostipes in the fecal samples were identified at week 4 (Figure 1). Two months after discontinuation of OI, the microbial composition of both groups returned to baseline levels. Fecal metabolite profiles were not altered during the 8-week intervention. A negative correlation was observed between calprotectin levels and the relative abundance of Bifidobacterium [q=0.08] and butyrate producer Anaerostipes [q=0.017] (Figure 2). Outcome analysis of inulin-induced change in calprotectin level during the intervention is pending. CONCLUSIONS Dietary intervention with prebiotic OI causes short term alterations in the microbiome of children with IBD characterized by an enrichment of Bifidobacterium and butyrate producer Anaerostipes. These results open new perspectives for development of microbiome-targeted dietary interventions in pediatric IBD. JB received the Crohn’s and Colitis Foundation Career Development Award # 693867 for this study. Figure 1 Selective effect of prebiotic supplementation on microbiome composition Figure 2 Correlation between calprotectin level and inulin-induced microbiome shift A negative correlation between fecal calprotectin level and inulin-induced change in relative abundance of Bifidobacterium [q= 0.08] and Anaerostipes [q=0.017] was observed during the 8-week intervention.
Endothelial TLR4 and the microbiome drive cerebral cavernous malformations
Cerebral cavernous malformations (CCMs) are a cause of stroke and seizure for which no effective medical therapies yet exist. CCMs arise from the loss of an adaptor complex that negatively regulates MEKK3–KLF2/4 signalling in brain endothelial cells, but upstream activators of this disease pathway have yet to be identified. Here we identify endothelial Toll-like receptor 4 (TLR4) and the gut microbiome as critical stimulants of CCM formation. Activation of TLR4 by Gram-negative bacteria or lipopolysaccharide accelerates CCM formation, and genetic or pharmacologic blockade of TLR4 signalling prevents CCM formation in mice. Polymorphisms that increase expression of the TLR4 gene or the gene encoding its co-receptor CD14 are associated with higher CCM lesion burden in humans. Germ-free mice are protected from CCM formation, and a single course of antibiotics permanently alters CCM susceptibility in mice. These studies identify unexpected roles for the microbiome and innate immune signalling in the pathogenesis of a cerebrovascular disease, as well as strategies for its treatment. Lipopolysaccharide derived from gut bacteria can accelerate the formation of cerebral cavernous malformations by activating TLR4 on endothelial cells, and polymorphisms that increase expression of the genes encoding TLR4 or its co-receptor CD14 are associated with higher CCM lesion burden in humans. Microbiome driven cerebral malformations Cerebral cavernous malformations (CCMs) are malformations of the vascular system, seen mainly in the brain where they can cause haemorrhagic stroke and seizures. CCMs arise from loss-of-function mutations in components of a complex that negatively regulates MEKK3–KLF2/4 signalling and Rho/ROCK signalling in brain endothelial cells. Mark Kahn and colleagues now identify upstream regulators that activate this pathway in brain endothelial cells. They find that lipopolysaccharide derived from gut bacteria can accelerate CCM formation by activating TLR4 on endothelial cells. The authors further show that polymorphisms in the TLR4 gene or CD14 , the gene encoding its co-receptor, are associated with higher CCM lesion burden in humans. These findings suggest that the gut microbiome and TLR4 are important drivers of CCMs and represent potential therapeutic targets.
Permissive microbiome characterizes human subjects with a neurovascular disease cavernous angioma
Cavernous angiomas (CA) are common vascular anomalies causing brain hemorrhage. Based on mouse studies, roles of gram-negative bacteria and altered intestinal homeostasis have been implicated in CA pathogenesis, and pilot study had suggested potential microbiome differences between non-CA and CA individuals based on 16S rRNA gene sequencing. We here assess microbiome differences in a larger cohort of human subjects with and without CA, and among subjects with different clinical features, and conduct more definitive microbial analyses using metagenomic shotgun sequencing. Relative abundance of distinct bacterial species in CA patients is shown, consistent with postulated permissive microbiome driving CA lesion genesis via lipopolysaccharide signaling, in humans as in mice. Other microbiome differences are related to CA clinical behavior. Weighted combinations of microbiome signatures and plasma inflammatory biomarkers enhance associations with disease severity and hemorrhage. This is the first demonstration of a sensitive and specific diagnostic microbiome in a human neurovascular disease. Gut microbiome has been linked to cavernous angioma (CA), a common vascular disease, but the role in humans remains unclear. Here, the authors combine 16S rRNA sequencing and shotgun metagenomics to profile the microbiome in a large cohort of human subjects with and without CA, and among subjects with different CA clinical features.
Unassigning bacterial species for microbiome studies
While existing methods do not provide reliable species-level assignments for 16S rRNA marker gene data, the Unassigner software solves this problem by ruling out species membership, allowing researchers to reason at the species level.
Lifestyle and the presence of helminths is associated with gut microbiome composition in Cameroonians
Background African populations provide a unique opportunity to interrogate host-microbe co-evolution and its impact on adaptive phenotypes due to their genomic, phenotypic, and cultural diversity. We integrate gut microbiome 16S rRNA amplicon and shotgun metagenomic sequence data with quantification of pathogen burden and measures of immune parameters for 575 ethnically diverse Africans from Cameroon. Subjects followed pastoralist, agropastoralist, and hunter-gatherer lifestyles and were compared to an urban US population from Philadelphia. Results We observe significant differences in gut microbiome composition across populations that correlate with subsistence strategy and country. After these, the variable most strongly associated with gut microbiome structure in Cameroonians is the presence of gut parasites. Hunter-gatherers have high frequencies of parasites relative to agropastoralists and pastoralists. Ascaris lumbricoides , Necator americanus , Trichuris trichiura , and Strongyloides stercoralis soil-transmitted helminths (“ANTS” parasites) significantly co-occur, and increased frequency of gut parasites correlates with increased gut microbial diversity. Gut microbiome composition predicts ANTS positivity with 80% accuracy. Colonization with ANTS, in turn, is associated with elevated levels of TH1, TH2, and proinflammatory cytokines, indicating an association with multiple immune mechanisms. The unprecedented size of this dataset allowed interrogation of additional questions—for example, we find that Fulani pastoralists, who consume high levels of milk, possess an enrichment of gut bacteria that catabolize galactose, an end product of lactose metabolism, and of bacteria that metabolize lipids. Conclusions These data document associations of bacterial microbiota and eukaryotic parasites with each other and with host immune responses; each of these is further correlated with subsistence practices.
Signatures of COVID-19 Severity and Immune Response in the Respiratory Tract Microbiome
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the respiratory tract, results in highly variable outcomes ranging from minimal illness to death, but the reasons for this are not well understood. We investigated the respiratory tract bacterial microbiome and small commensal DNA viruses in hospitalized COVID-19 patients and found that each was markedly abnormal compared to that in healthy people and differed from that in critically ill patients without COVID-19. Viral infection of the respiratory tract can be associated with propagating effects on the airway microbiome, and microbiome dysbiosis may influence viral disease. Here, we investigated the respiratory tract microbiome in coronavirus disease 2019 (COVID-19) and its relationship to disease severity, systemic immunologic features, and outcomes. We examined 507 oropharyngeal, nasopharyngeal, and endotracheal samples from 83 hospitalized COVID-19 patients as well as non-COVID patients and healthy controls. Bacterial communities were interrogated using 16S rRNA gene sequencing, and the commensal DNA viruses Anelloviridae and Redondoviridae were quantified by qPCR. We found that COVID-19 patients had upper respiratory microbiome dysbiosis and greater change over time than critically ill patients without COVID-19. Oropharyngeal microbiome diversity at the first time point correlated inversely with disease severity during hospitalization. Microbiome composition was also associated with systemic immune parameters in blood, as measured by lymphocyte/neutrophil ratios and immune profiling of peripheral blood mononuclear cells. Intubated patients showed patient-specific lung microbiome communities that were frequently highly dynamic, with prominence of Staphylococcus . Anelloviridae and Redondoviridae showed more frequent colonization and higher titers in severe disease. Machine learning analysis demonstrated that integrated features of the microbiome at early sampling points had high power to discriminate ultimate level of COVID-19 severity. Thus, the respiratory tract microbiome and commensal viruses are disturbed in COVID-19 and correlate with systemic immune parameters, and early microbiome features discriminate disease severity. Future studies should address clinical consequences of airway dysbiosis in COVID-19, its possible use as biomarkers, and the role of bacterial and viral taxa identified here in COVID-19 pathogenesis. IMPORTANCE COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the respiratory tract, results in highly variable outcomes ranging from minimal illness to death, but the reasons for this are not well understood. We investigated the respiratory tract bacterial microbiome and small commensal DNA viruses in hospitalized COVID-19 patients and found that each was markedly abnormal compared to that in healthy people and differed from that in critically ill patients without COVID-19. Early airway samples tracked with the level of COVID-19 illness reached during hospitalization, and the airway microbiome also correlated with immune parameters in blood. These findings raise questions about the mechanisms linking SARS-CoV-2 infection and other microbial inhabitants of the airway, including whether the microbiome might regulate severity of COVID-19 disease and/or whether early microbiome features might serve as biomarkers to discriminate disease severity.
Establishing a mucosal gut microbial community in vitro using an artificial simulator
The Twin Simulator of the Human Intestinal Microbial Ecosystem (TWINSHIME®) was initially developed to study the luminal gut microbiota of the ascending (AC), transverse (TC), and descending (DC) colon regions. Given the unique composition and potential importance of the mucosal microbiota for human health, the TWINSHIME was recently adapted to simulate the mucosal microbiota as well as the luminal community. It has been previously demonstrated that the luminal community in the TWINSHIME reaches a steady state within two weeks post inoculation, and is able to differentiate into region specific communities. However, less is known regarding the mucosal community structure and dynamics. During the current study, the luminal and mucosal communities in each region of the TWINSHIME were evaluated over the course of six weeks. Based on 16S rRNA gene sequencing and short chain fatty acid analysis, it was determined that both the luminal and mucosal communities reached stability 10-20 days after inoculation, and remained stable until the end of the experiment. Bioinformatics analysis revealed the formation of unique community structures between the mucosal and luminal phases in all three colon regions, yet these communities were similar to the inoculum. Specific colonizers of the mucus mainly belonged to the Firmicutes phylum and included Lachnospiraceae (AC/TC/DC), Ruminococcaceae and Eubacteriaceae (AC), Lactobacillaceae (AC/TC), Clostridiaceae and Erysipelotrichaceae (TC/DC). In contrast, Bacteroidaceae were enriched in the gut lumen of all three colon regions. The unique profile of short chain fatty acid (SCFA) production further demonstrated system stability, but also proved to be an area of marked differences between the in vitro system and in vivo reports. Results of this study demonstrate that it is possible to replicate the community structure and composition of the gut microbiota in vitro. Through implementation of this system, the human gut microbiota can be studied in a dynamic and continuous fashion.