Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,323 result(s) for "Tang, Miao"
Sort by:
Research on policy effect and regional difference of allocation efficiency of rural preschool education resources: evidence from China
By the end of 2020, with all rural residents living in poverty under the current standard lifted out of absolute poverty, marking a new phase in China’s anti-poverty efforts with new pursuit of the consolidation and expansion of poverty alleviation achievements in the effective connection with rural revitalization. The development and improvement of funding mechanisms for rural preschool education are crucially important to further promoting rural development. Employing an input-oriented three-stage DEA model and the Malmquist index, this study conducts a static and dynamic analysis of resource allocation performance in rural preschool education across 30 provinces in China (excluding Tibet, Hong Kong, Macao, and Taiwan). The findings reveal that random factors and environmental variables lead to an underestimation of rural preschool education investment performance. Secondly, economically developed regions are not necessarily equipped with higher performance in rural preschool education investment as regional differences stem from the combined effects of various economic, agglomeration, demographic, and scale factors across different areas of the country. Finally, based on these empirical results, this paper proposes policy recommendations to enhance resource allocation performance in China’s rural preschool education.
Tailored Fabrication of Carbon Dot Composites with Full‐Color Ultralong Room‐Temperature Phosphorescence for Multidimensional Encryption
Ultralong room‐temperature phosphorescence (RTP) is highly useful for information encryption, organic electronics, bioelectronics, etc. However, the preparation of related metal‐free materials with multiple colors across the full spectrum remains a major challenge. Herein, a facile method is developed to fabricate boron‐doped carbon dot (B‐CD) composites with full‐color long lifetime RTP continuously tailorable in the range of 466–638 nm simply by pyrolysis of the citric acid and boric acid precursors with various mass ratios at different temperatures. This leads to the formation of luminescent B‐CD centers in a rigid polycrystalline B2O3 matrix, which effectively stabilizes the triplet excited states of B‐CDs. Thus, the composites become phosphorescent over a relatively long period (5–12 s) after the removal of the irradiation source. Meanwhile, the increased particle size and oxidation degree of B‐CDs obtained at larger citric acid feeding or higher pyrolysis temperature continuously shift the phosphorescence from blue to red. Due to the formation of multiple luminescence centers, the RTP can also be finely modulated by the excitation wavelength. The resulting B‐CD composites with highly tunable long lifetime RTP further allow a variety of distinctive applications in multidimensional encryption handily utilizing space, time, and color variations. Simple pyrolysis of citric acid and boric acid leads to the formation of carbon dot composites with highly tailorable full‐color ultralong room temperature phosphorescence, which subsequently favors a variety of distinctive applications in multidimensional encryption.
How to evaluate the efficiency of rural preschool education resources and its regional differences in China
Rural preschool education is an integral part of rural society, and improving the efficiency system of evaluation of rural preschool education resource allocation is an important strategy for the implementation of the rural revitalization. This paper uses an input-oriented three-stage DEA model to analyze the efficiency of rural preschool education resource allocation in 30 provinces in China from 2012 to 2020. The results show that external factors such as the level of urbanization, birth rate, and the scale of kindergarten impacts the efficiency of rural preschool education resource allocation significantly. Without regard to the influence of environmental and random factors, the overall trend of the average efficiency of rural preschool education resource allocation in China has improved, showing a regional pattern of “central > eastern > western.” Therefore, based on the relevant policies, this paper puts forward rational suggestions for the improvement of rural preschool resource allocation efficiency in China from the perspectives of human, financial and material resources.
Therapeutic mechanisms of ginseng in coronary heart disease
Coronary heart disease (CHD) is the most common clinical manifestation of cardiovascular disease. It is characterized by myocardial ischemia, which is caused by coronary atherosclerosis. CHD is a significant global health problem with increasing prevalence every year because of significant changes in the lifestyles and diets. Ginseng is a traditional Chinese medicinal herb that has been used in food preparations and traditional medicine for several centuries. Several studies have demonstrated that ginseng improved cardiac function by normalizing blood glucose levels and decreasing blood pressure, oxidative stress, platelet aggregation, and lipid dysregulation in vivo . This review describes the current understanding of the mechanisms by which ginseng alleviates CHD, and provides a reference for the clinical development and application of ginseng as an alternative therapy for CHD.
Macrophage to myofibroblast transition contributes to subretinal fibrosis secondary to neovascular age-related macular degeneration
Background Macular fibrosis causes irreparable vision loss in neovascular age-related macular degeneration (nAMD) even with anti-vascular endothelial growth factor (VEGF) therapy. Inflammation is known to play an important role in macular fibrosis although the underlying mechanism remains poorly defined. The aim of this study was to understand how infiltrating macrophages and complement proteins may contribute to macular fibrosis. Methods Subretinal fibrosis was induced in C57BL/6J mice using the two-stage laser protocol developed by our group. The eyes were collected at 10, 20, 30 and 40 days after the second laser and processed for immunohistochemistry for infiltrating macrophages (F4/80 and Iba-1), complement components (C3a and C3aR) and fibrovascular lesions (collagen-1, Isolectin B4 and α-SMA). Human retinal sections with macular fibrosis were also used in the study. Bone marrow-derived macrophages (BMDMs) from C57BL/6J mice were treated with recombinant C3a, C5a or TGF-β for 48 and 96 h. qPCR, Western blot and immunohistochemistry were used to examine the expression of myofibroblast markers. The involvement of C3a-C3aR pathway in macrophage to myofibroblast transition (MMT) and subretinal fibrosis was further investigated using a C3aR antagonist (C3aRA) and a C3a blocking antibody in vitro and in vivo. Results Approximately 20~30% of F4/80 + (or Iba-1 + ) infiltrating macrophages co-expressed α-SMA in subretinal fibrotic lesions both in human nAMD eyes and in the mouse model. TGF-β and C3a, but not C5a treatment, significantly upregulated expression of α-SMA, fibronectin and collagen-1 in BMDMs. C3a-induced upregulation of α-SMA, fibronectin and collagen-1 in BMDMs was prevented by C3aRA treatment. In the two-stage laser model of induced subretinal fibrosis, treatment with C3a blocking antibody but not C3aRA significantly reduced vascular leakage and Isolectin B4 + lesions. The treatment did not significantly alter collagen-1 + fibrotic lesions. Conclusions MMT plays a role in macular fibrosis secondary to nAMD. MMT can be induced by TGF-β and C3a but not C5a. Further research is required to fully understand the role of MMT in macular fibrosis. Graphical abstract Macrophage to myofibroblast transition (MMT) contributes to subretinal fibrosis. Subretinal fibrosis lesions contain various cell types, including macrophages and myofibroblasts, and are fibrovascular. Myofibroblasts are key cells driving pathogenic fibrosis, and they do so by producing excessive amount of extracellular matrix proteins. We have found that infiltrating macrophages can transdifferentiate into myofibroblasts, a phenomenon termed macrophage to myofibroblast transition (MMT) in macular fibrosis. In addition to TGF-β1, C3a generated during complement activation in CNV can also induce MMT contributing to macular fibrosis. RPE = retinal pigment epithelium. BM = Bruch’s membrane. MMT = macrophage to myofibroblast transition. TGFB = transforming growth factor β. a-SMA = alpha smooth muscle actin. C3a = complement C3a.
NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component
NEK7 is a serine-threonine kinase linked to mitosis. Beutler and colleagues show that NEK7 is required for assembly of the NLRP3 inflammasome and restricts NLRP3 activation to interphase of the cell cycle. The NLRP3 inflammasome responds to microbes and danger signals by processing and activating proinflammatory cytokines, including interleukin 1β (IL-1β) and IL-18. We found here that activation of the NLRP3 inflammasome was restricted to interphase of the cell cycle by NEK7, a serine-threonine kinase previously linked to mitosis. Activation of the NLRP3 inflammasome required NEK7, which bound to the leucine-rich repeat domain of NLRP3 in a kinase-independent manner downstream of the induction of mitochondrial reactive oxygen species (ROS). This interaction was necessary for the formation of a complex containing NLRP3 and the adaptor ASC, oligomerization of ASC and activation of caspase-1. NEK7 promoted the NLRP3-dependent cellular inflammatory response to intraperitoneal challenge with monosodium urate and the development of experimental autoimmune encephalitis in mice. Our findings suggest that NEK7 serves as a cellular switch that enforces mutual exclusivity of the inflammasome response and cell division.
Research on Safety Helmet Detection Algorithm Based on Improved YOLOv5s
Safety helmets are essential in various indoor and outdoor workplaces, such as metallurgical high-temperature operations and high-rise building construction, to avoid injuries and ensure safety in production. However, manual supervision is costly and prone to lack of enforcement and interference from other human factors. Moreover, small target object detection frequently lacks precision. Improving safety helmets based on the helmet detection algorithm can address these issues and is a promising approach. In this study, we proposed a modified version of the YOLOv5s network, a lightweight deep learning-based object identification network model. The proposed model extends the YOLOv5s network model and enhances its performance by recalculating the prediction frames, utilizing the IoU metric for clustering, and modifying the anchor frames with the K-means++ method. The global attention mechanism (GAM) and the convolutional block attention module (CBAM) were added to the YOLOv5s network to improve its backbone and neck networks. By minimizing information feature loss and enhancing the representation of global interactions, these attention processes enhance deep learning neural networks’ capacity for feature extraction. Furthermore, the CBAM is integrated into the CSP module to improve target feature extraction while minimizing computation for model operation. In order to significantly increase the efficiency and precision of the prediction box regression, the proposed model additionally makes use of the most recent SIoU (SCYLLA-IoU LOSS) as the bounding box loss function. Based on the improved YOLOv5s model, knowledge distillation technology is leveraged to realize the light weight of the network model, thereby reducing the computational workload of the model and improving the detection speed to meet the needs of real-time monitoring. The experimental results demonstrate that the proposed model outperforms the original YOLOv5s network model in terms of accuracy (Precision), recall rate (Recall), and mean average precision (mAP). The proposed model may more effectively identify helmet use in low-light situations and at a variety of distances.
How does education affect urban carbon emission efficiency under the strategy of scientific and technological innovation?
Low-carbon economy is not only an important topic for the globe but also a serious challenge for China with its economy entering a new level. Based on the DEA-undesirable model and Malmquist index model, urban agglomeration of the Yangtze River Delta and the Guangdong–Hong Kong–Macao Greater Bay Area from 2010 to 2021 were selected as research samples. Based on that, a panel generalized method of moments model was constructed to analyze the effects of the education level, technological development, and their interaction on urban carbon emission efficiency. It found that 1) the carbon emission efficiency of the Yangtze River Delta and the Guangdong–Hong Kong–Macao Greater Bay Area urban agglomerations shows a steady growth trend, but the overall level is low and there are regional differences, among which pure technical efficiency mainly limits the improvement of comprehensive efficiency; 2) the education level and technological development have a high positive correlation on urban carbon emission, and their interaction is conducive to the improvement of carbon emission efficiency. The carbon emission efficiency has a significant advantage under the influence of control variables, such as the economic development level, industrial structure upgrading, opening-up degree, and Internet penetration rate. 3) According to the economic dimension and population dimension, the samples of the Yangtze River Delta and the Guangdong–Hong Kong–Macao Greater Bay Area were divided into large cities and small cities, and regression results showed no substantial changes. It shows that the research conclusion is scientific. According to the aforementioned conclusion, this paper puts forward corresponding countermeasures and suggestions.
The effect of successive low-impact development rainwater systems on peak flow reduction in residential areas of Shizhuang, China
Against a background of frequent urban flooding and the construction of new so-called “sponge cities” in China, this paper proposes a scheme for Successive Low-Impact Development Rainwater Systems (SLIDRS) in residential areas. The Shizhuang community in China is used as a case study site for a simulated SLIDRS infrastructure based on a stormwater management model (SWMM). Peak flows, peak delay times, infiltration, and water conservation were simulated and analyzed under three different scenarios: pre-development conditions, residential development with the use of a conventional sewer system, and residential development with the use of SLIDRS. The differing effects of development under the following four rainfall conditions were evaluated: 1-year, 2-year, 5-year, and 10-year return periods. Results showed that SLIDRS can decrease peak flows and total runoff volume effectively. Moreover, peak flow times were delayed compared with those resulting from the conventional technology. Therefore, SLIDRS may represent a viable strategy towards solving local urban flooding problems.
Snowflake Bionic Flow Channel Design to Optimize the Pressure Drop and Flow Uniform of Proton Exchange Membrane Fuel Cells
The flow channel design of bipolar plates plays a significant role in the proton exchange membrane fuel cells operation, particularly in thermal and water management. The pursuit of low-pressure drop supply and flow field uniformity in PEM fuel cells has not stopped, resulting in numerous new bipolar plate flow channel designs. The biomimetic leaf vein shape-based flow channel and lung flow channel designs can significantly improve gas supply uniformity and reduce pressure drop. Therefore, we propose a snowflake-shaped bionic channel design by integrating the advantages of the leaf vein shape and lung shape channel. A 3D multi-physics fuel cell model is used to verify the feasibility and superiority of the bionic snowflake design in improving fuel cell performance, especially in reducing the pumping work. The local pressure distribution, oxygen distribution, water distribution, and current density distribution are used to reveal the enhancement mechanism of the new snowflake flow channel. The flow uniformity is further enhanced by using multi-objective (13 target parameters) and multi-parameter (18 independent variables) genetic algorithm optimization. The general goal of this work is to provide a new strategy for the thermal and water management of PEM fuel cells.