Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
23
result(s) for
"Tang, Siah Ying"
Sort by:
Preparation and Properties of Spherical Natural Rubber/Silica Composite Powders via Spray Drying
by
Tanthapanichakoon, Wiwut
,
Tang, Siah Ying
,
Soottitantawat, Apinan
in
Air temperature
,
composite powder
,
Elongation
2020
In this work, composite powders of natural rubber/silica (NR-SiO2) were prepared via sol-gel and spray drying method. The morphology and physical properties of resultant rubber composite powders were characterized by scanning electron microscopy with energy dispersive X-ray spectrometry, laser light scattering particle sizer and thermogravimetric analyzer. The results showed that spray-dried NR-SiO2 particles were spherical in shape with diameter of less than 10 μm, with silica on the outer layer. The particle size was found to increase gradually with the increase in NR/Si mass ratio. Marginal growth in particle size was observed with increasing feed flow rate. Increasing inlet air temperature improved the latex particle encapsulation by silica layer while maintaining the final particle size. The mechanical properties of NR-SiO2 powders-filled polylactic acid (PLA) composite increase gradually with the addition of dried particles of higher rubber content. However, the composite exhibited relatively lower or reduced tensile strength and elongation at break compared to the host PLA polymer. This could be attributed to poor filler dispersion associated with weak filler/matrix interaction effect occurring during melt-compounding process.
Journal Article
Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release
by
Lawrencia, Dora
,
Goh, Joo Kheng
,
Soottitantawat, Apinan
in
Agriculture
,
coating materials
,
Contamination
2021
Rising world population is expected to increase the demand for nitrogen fertilizers to improve crop yield and ensure food security. With existing challenges on low nutrient use efficiency (NUE) of urea and its environmental concerns, controlled release fertilizers (CRFs) have become a potential solution by formulating them to synchronize nutrient release according to the requirement of plants. However, the most significant challenge that persists is the “tailing” effect, which reduces the economic benefits in terms of maximum fertilizer utilization. High materials cost is also a significant obstacle restraining the widespread application of CRF in agriculture. The first part of this review covers issues related to the application of conventional fertilizer and CRFs in general. In the subsequent sections, different raw materials utilized to form CRFs, focusing on inorganic and organic materials and synthetic and natural polymers alongside their physical and chemical preparation methods, are compared. Important factors affecting rate of release, mechanism of release and mathematical modelling approaches to predict nutrient release are also discussed. This review aims to provide a better overview of the developments regarding CRFs in the past ten years, and trends are identified and analyzed to provide an insight for future works in the field of agriculture.
Journal Article
Unravelling the Swelling Behaviour and Antibacterial Activity of Palm Cellulose Nanofiber-based Metallic Nanocomposites
by
Kiat Wong, See
,
Hing Goh, Bey
,
Ying Tang, Siah
in
Biodegradability
,
Cellulose
,
Cellulose fibers
2020
The development of functional antimicrobial metal oxide nanocomposite systems based on nanocellulose has been the subject of extensive research in recent years. In addition to its sustainability, biodegradability and non-toxic properties, nanocelullose present an extremely high surface area favoring the selective growth and immobilization of ultrafine metal oxide nanoparticles on the cellulosic surface. In this study, oil palm biomass-derived cellulose nanofiber (CNF) decorated with zinc oxide (ZnO) nanocomposites were produced via ultrasound-assisted in situ co-precipitation approach. The morphology and chemical composition of the as-synthesized ZnO/CNF composites were characterized using field emission scanning electron microscopy (FE-SEM) and Fourier-transform infrared (FT-IR). FE-SEM images revealed the fibrous morphology of nanocomposites with a good distribution of ZnO NPs. The FT-IR analysis confirmed a strong interaction between surface functional groups of CNF and ZnO nanoparticles. The swelling behavior of composites was found to be improved with addition of ZnO nanoparticles in the CNF matrix. The hybrid ZnO-CNF exhibited pronounced antibacterial properties against methicillin-resistant Staphylococcus aureus (MRSA). The findings of present study support the possibility of using this palm CNF-based metallic nanocomposites as nanofillers for wound care application.
Journal Article
Mitigation of Environmental Stress-Impacts in Plants: Role of Sole and Combinatory Exogenous Application of Glutathione
by
Koh, Yi Sze
,
Tan, Khang Wei
,
Zengin, Gokhan
in
Abiotic stress
,
Agricultural production
,
Ascorbic acid
2021
Glutathione (GSH; γ-glutamyl-cysteinyl-glycine), a low-molecular-weight thiol, is the most pivotal metabolite involved in the antioxidative defense system of plants. The modulation of GSH on the plant in response to environmental stresses could be illustrated through key pathways such as reactive oxygen species (ROS) scavenging and signaling, methylglyoxal (MG) detoxification and signaling, upregulation of gene expression for antioxidant enzymes, and metal chelation and xenobiotic detoxification. However, under extreme stresses, the biosynthesis of GSH may get inhibited, causing an excess accumulation of ROS that induces oxidative damage on plants. Hence, this gives rise to the idea of exploring the use of exogenous GSH in mitigating various abiotic stresses. Extensive studies conducted borne positive results in plant growth with the integration of exogenous GSH. The same is being observed in terms of crop yield index and correlated intrinsic properties. Though, the improvement in plant growth and yield contributed by exogenous GSH is limited and subjected to the glutathione pool [GSH/GSSG; the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG)] homeostasis. Therefore, recent studies focused on the sequenced application of GSH was performed in order to complement the existing limitation. Along with various innovative approaches in combinatory use with different bioactive compounds (proline, citric acid, ascorbic acid, melatonin), biostimulants (putrescine, Moringa leaf extract, selenium, humic acid), and microorganisms (cyanobacteria) have resulted in significant improvements when compared to the individual application of GSH. In this review, we reinforced our understanding of biosynthesis, metabolism and consolidated different roles of exogenous GSH in response to environmental stresses. Strategy was also taken by focusing on the recent progress of research in this niche area by covering on its individualized and combinatory applications of GSH prominently in response to the abiotic stresses. In short, the review provides a holistic overview of GSH and may shed light on future studies and its uses.
Journal Article
Angelicin—A Furocoumarin Compound With Vast Biological Potential
by
Chan, Kok Gan
,
Yap, Wei Hsum
,
Tan, Loh Teng Hern
in
angelicin
,
Anti-inflammatory agents
,
Antiviral agents
2020
Angelicin, a member of the furocoumarin group, is related to psoralen which is well known for its effectiveness in phototherapy. The furocoumarins as a group have been studied since the 1950s but only recently has angelicin begun to come into its own as the subject of several biological studies. Angelicin has demonstrated anti-cancer properties against multiple cell lines, exerting effects
both the intrinsic and extrinsic apoptotic pathways, and also demonstrated an ability to inhibit tubulin polymerization to a higher degree than psoralen. Besides that, angelicin too demonstrated anti-inflammatory activity in inflammatory-related respiratory and neurodegenerative ailments
the activation of NF-κB pathway. Angelicin also showed pro-osteogenesis and pro-chondrogenic effects on osteoblasts and pre-chondrocytes respectively. The elevated expression of pro-osteogenic and chondrogenic markers and activation of TGF-β/BMP, Wnt/β-catenin pathway confirms the positive effect of angelicin bone remodeling. Angelicin also increased the expression of estrogen receptor alpha (ERα) in osteogenesis. Other bioactivities, such as anti-viral and erythroid differentiating properties of angelicin, were also reported by several researchers with the latter even displaying an even greater aptitude as compared to the commonly prescribed drug, hydroxyurea, which is currently on the market. Apart from that, recently, a new application for angelicin against periodontitis had been studied, where reduction of bone loss was indirectly caused by its anti-microbial properties. All in all, angelicin appears to be a promising compound for further studies especially on its mechanism and application in therapies for a multitude of common and debilitating ailments such as sickle cell anaemia, osteoporosis, cancer, and neurodegeneration. Future research on the drug delivery of angelicin in cancer, inflammation and erythroid differentiation models would aid in improving the bioproperties of angelicin and efficacy of delivery to the targeted site. More in-depth studies of angelicin on bone remodeling, the pro-osteogenic effect of angelicin in various bone disease models and the anti-viral implications of angelicin in periodontitis should be researched. Finally, studies on the binding of angelicin toward regulatory genes, transcription factors, and receptors can be done through experimental research supplemented with molecular docking and molecular dynamics simulation.
Journal Article
Essential oils and plant extracts for tropical fruits protection: From farm to table
by
Chan, Kim Wei
,
Mohd Ali, Muhamad Israq Amir
,
Abdull Razis, Ahmad Faizal
in
Agriculture
,
Antimicrobial agents
,
Bacterial diseases
2022
The tropical fruit industry in Malaysia makes up a large proportion of the agriculture sector, contributing to the local economy. Due to their high sugar and water content, tropical fruits are prone to pathogenic infections, providing optimal microorganism growth conditions. As one of the largest exporters of these fruits globally, following other Southeast Asian countries such as Thailand, Indonesia and the Philippines, the quality control of exported goods is of great interest to farmers and entrepreneurs. Traditional methods of managing diseases in fruits depend on chemical pesticides, which have attracted much negative perception due to their questionable safety. Therefore, the use of natural products as organic pesticides has been considered a generally safer alternative. The extracts of aromatic plants, known as essential oils or plant extracts, have garnered much interest, especially in Asian regions, due to their historical use in traditional medicine. In addition, the presence of antimicrobial compounds further advocates the assessment of these extracts for use in crop disease prevention and control. Herein, we reviewed the current developments and understanding of the use of essential oils and plant extracts in crop disease management, mainly focusing on tropical fruits. Studies reviewed suggest that essential oils and plant extracts can be effective at preventing fungal and bacterial infections, as well as controlling crop disease progression at the pre and postharvest stages of the tropical fruit supply chain. Positive results from edible coatings and as juice preservatives formulated with essential oils and plant extracts also point towards the potential for commercial use in the industry as more chemically safe and environmentally friendly biopesticides.
Journal Article
Assessing the suitability of self-healing rubber glove for safe handling of pesticides
by
Low, Darren Yi Sern
,
Tang, Siah Ying
,
Supramaniam, Janarthanan
in
639/301/923/1028
,
639/638/899
,
692/700/3160
2022
Rubber gloves used for protection against chemicals or hazards are generally prone to tearing or leaking after repeated use, exposing the worker to potentially hazardous agents. Self-healing technology promises increased product durability and shelf life appears to be a feasible solution to address these issues. Herein, we aimed to fabricate a novel epoxidized natural rubber-based self-healable glove (SH glove) and investigate its suitability for handling pesticides safely. In this study, breakthrough time analysis and surface morphological observation were performed to determine the SH glove’s ability to withstand dangerous chemicals. The chemical resistance performance of the fabricated SH glove was compared against four different types of commercial gloves at different temperatures. Using malathion as a model pesticide, the results showed that the SH glove presented chemical resistance ability comparable to those gloves made with nitrile and NR latex at room temperature and 37 °C. The self-healing test revealed that the SH glove could be self-healed and retained its chemical resistance ability close to its pre-cut value. Our findings suggested that the developed SH glove with proven chemical resistance capability could be a new suitable safety glove for effectively handling pesticides and reducing glove waste generation.
Journal Article
Cosmeceutical Therapy: Engaging the Repercussions of UVR Photoaging on the Skin’s Circadian Rhythm
by
Camille Keisha Mahendra
,
Gokhan Zengin
,
Yin-Quan Tang
in
Apoptosis
,
Cell division
,
Circadian Rhythm
2022
Sunlight is an important factor in regulating the central circadian rhythm, including the modulation of our sleep/wake cycles. Sunlight had also been discovered to have a prominent influence on our skin’s circadian rhythm. Overexposure or prolonged exposure to the sun can cause skin photodamage, such as the formation of irregular pigmentation, collagen degradation, DNA damage, and even skin cancer. Hence, this review will be looking into the detrimental effects of sunlight on our skin, not only at the aspect of photoaging but also at its impact on the skin’s circadian rhythm. The growing market trend of natural-product-based cosmeceuticals as also caused us to question their potential to modulate the skin’s circadian rhythm. Questions about how the skin’s circadian rhythm could counteract photodamage and how best to maximize its biopotential will be discussed in this article. These discoveries regarding the skin’s circadian rhythm have opened up a completely new level of understanding of our skin’s molecular mechanism and may very well aid cosmeceutical companies, in the near future, to develop better products that not only suppress photoaging but remain effective and relevant throughout the day.
Journal Article
Unveiling the molecular mechanisms: dietary phytosterols as guardians against cardiovascular diseases
by
Khalid, Asaad
,
Iesa, Mohamed A. M.
,
Bouyahya, Abdelhakim
in
absorption
,
Biomedical and Life Sciences
,
Bioorganic Chemistry
2024
Until recently, the main pharmaceuticals used to control cholesterol and prevent cardiovascular disease (CVD) were statin-related drugs, known for their historical side effects. Therefore, there is growing interest in exploring alternatives, such as nutritional and dietary components, that could play a central role in CVD prevention. This review aims to provide a comprehensive understanding of how natural phytosterols found in various diets combat CVDs. We begin with a description of the overall approach, then we explore in detail the different direct and indirect mechanisms that contribute to reducing cardiovascular incidents. Phytosterols, including stigmasterol,
β
-sitosterol, ergosterol, and fucosterol, emerge as promising molecules within nutritional systems for protection against CVDs due to their beneficial effects at different levels through direct or indirect cellular, subcellular, and molecular mechanisms. Specifically, the mentioned phytosterols exhibit the ability to diminish the generation of various radicals, including hydroperoxides and hydrogen peroxide. They also promote the activation of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione, while inhibiting lipid peroxidation through the activation of Nrf2 and Nrf2/heme oxygenase-1 (HO-1) signaling pathways. Additionally, they demonstrate a significant inhibitory capacity in the generation of pro-inflammatory cytokines, thus playing a crucial role in regulating the inflammatory/immune response by inhibiting the expression of proteins involved in cellular signaling pathways such as JAK3/STAT3 and NF-κB. Moreover, phytosterols play a key role in reducing cholesterol absorption and improving the lipid profile. These compounds can be used as dietary supplements or included in specific diets to aid control cholesterol levels, particularly in individuals suffering from hypercholesterolemia.
Graphical Abstract
Journal Article
Counteracting the Ramifications of UVB Irradiation and Photoaging with Swietenia macrophylla King Seed
by
Khan, Shafi Ullah
,
Ming, Long Chiau
,
Abidin, Syafiq Asnawi Zainal
in
Antioxidants
,
Cosmetics
,
Cytotoxicity
2021
In this day and age, the expectation of cosmetic products to effectively slow down skin photoaging is constantly increasing. However, the detrimental effects of UVB on the skin are not easy to tackle as UVB dysregulates a wide range of molecular changes on the cellular level. In our research, irradiated keratinocyte cells not only experienced a compromise in their redox system, but processes from RNA translation to protein synthesis and folding were also affected. Aside from this, proteins involved in various other processes like DNA repair and maintenance, glycolysis, cell growth, proliferation, and migration were affected while the cells approached imminent cell death. Additionally, the collagen degradation pathway was also activated by UVB irradiation through the upregulation of inflammatory and collagen degrading markers. Nevertheless, with the treatment of Swietenia macrophylla (S. macrophylla) seed extract and fractions, the dysregulation of many genes and proteins by UVB was reversed. The reversal effects were particularly promising with the S. macrophylla hexane fraction (SMHF) and S. macrophylla ethyl acetate fraction (SMEAF). SMHF was able to oppose the detrimental effects of UVB in several different processes such as the redox system, DNA repair and maintenance, RNA transcription to translation, protein maintenance and synthesis, cell growth, migration and proliferation, and cell glycolysis, while SMEAF successfully suppressed markers related to skin inflammation, collagen degradation, and cell apoptosis. Thus, in summary, our research not only provided a deeper insight into the molecular changes within irradiated keratinocytes, but also serves as a model platform for future cosmetic research to build upon. Subsequently, both SMHF and SMEAF also displayed potential photoprotective properties that warrant further fractionation and in vivo clinical trials to investigate and obtain potential novel bioactive compounds against photoaging.
Journal Article